Modeling Chronic Toxicity: A comparison of experimental variability with read across predictions

Christoph Helma ${ }^{1}$, David Vorgrimmler ${ }^{1}$, Denis Gebele ${ }^{1}$, Martin Gtlein ${ }^{2}$, Benoit Schilter ${ }^{3}$, Elena Lo Piparo ${ }^{3}$ E-mail:
${ }^{1}$ in silico toxicology gmbh, Basel, Switzerland
${ }^{2}$ Inst. f. Computer Science, Johannes Gutenberg Universitt Mainz, Germany
${ }^{3}$ Chemical Food Safety Group, Nestl Research Center, Lausanne, Switzerland

Introduction

Elena + Benoit

The quality and reproducibility of (Q)SAR and read-across predictions is a controversial topic in the toxicological risk-assessment community. Although model predictions can be validated with various procedures it is rarely possible to put the results into the context of experimental variability, because replicate experiments are rarely available.

With missing information about the variability of experimental toxicity data it is hard to judge the performance of predictive models and it is tempting for model developments to use aggressive model optimisation methods that lead to impressive validation results, but also to
overfitted models with little practical relevance.

In this study we intent to compare model predictions with experimental variability with chronic oral rat lowest adverse effect levels (LOAEL) as toxicity endpoint. We are using two datasets, one from (Mazzatorta et al. 2008) (Mazzatorta dataset) and one from the Swiss Federal Office of TODO (Swiss Federal Office dataset).

Elena: do you have a reference and the name of the department?

155 compounds are common in both datasets and we use them as a test set in our investigation. For the Mazzatorta and Swiss Federal Office datasets we will

- compare the structural diversity of both datasets
- compare the LOAEL values in both datasets
- build prediction models
- predict LOAELs of the training set
- compare predictions with experimental variability

With this investigation we also want to support the idea of reproducible research, by providing all datasets and programs that have been used to generate this manuscript under TODO creative/scientific commons? (datasets) and GPL (programs) licenses.

A self-contained docker image with all program dependencies required for the reproduction of these results is available from TODO.

Source code and datasets for the reproduction of this manuscript can be downloaded from the GitHub repository TODO. The lazar framework (Maunz et al. 2013) is also available under a GPL License from https://github.com/opentox/lazar.

Elena: please check if this is publication strategy is ok for the Swiss Federal Office

Materials and Methods

Datasets

Mazzatorta dataset

The first dataset (Mazzatorta dataset for further reference) originates from the publication of (Mazzatorta et al. 2008). It contains chronic (> 180 days) lowest observed effect levels (LOAEL) for rats (Rattus norvegicus) after oral (gavage, diet, drinking water) administration. The Mazzatorta dataset consists of 567 LOAEL values for 445 unique chemical structures.

Swiss Federal Office dataset

Elena + Swiss Federal Office contribution (input)
The original Swiss Federal Office dataset has chronic toxicity data for rats, mice and multi generation effects. For the purpose of this study only rat LOAEL data with oral administration was used. This leads to the Swiss Federal Office dataset with 493 rat LOAEL values for r length(unique(s\$SMILES)) unique chemical structures.

Preprocessing

Chemical structures (represented as SMILES (Weininger 1988)) in both datasets were checked for correctness. Syntactically incorrect and missing SMILES were generated from other identifiers (e.g names, CAS numbers). Unique smiles from the OpenBabel library (OBoyle et al. 2011) were used for the identification of duplicated structures.

Studies with undefined or empty LOAEL entries were removed from the datasets. LOAEL values were converted to $\mathrm{mmol} / \mathrm{kg}$ _bw/day units and rounded to five significant digits. For prediction, validation and visualisation purposes $-\log 10$ transformations are used.

Derived datasets

Two derived datasets were obtained from the original datasets:

The test dataset contains data of compounds that occur in both datasets. LOAEL values equal at five significant digits were considered as duplicates originating from the same study/publication and only one instance was kept in the test dataset. The test dataset has 375 LOAEL values for 155 unique chemical structures.

The training dataset is the union of the Mazzatorta and the Swiss Federal Office dataset and it is used to build predictive models. LOAEL duplicates were removed using the same criteria as for the test dataset. The training dataset has 998 LOAEL values for 671 unique chemical structures.

Algorithms

In this study we are using the modular lazar (lazy structure activity relationships) framework (Maunz et al. 2013) for model development and validation.
lazar follows the following basic workflow: For a given chemical structure lazar

- searches in a database for similar structures (neighbors) with experimental data,
- builds a local QSAR model with these neighbors and
- uses this model to predict the unknown activity of the query compound.

This procedure resembles an automated version of read across predictions in toxicology, in machine learning terms it would be classified as a k-nearest-neighbor algorithm.

Apart from this basic workflow lazar is completely modular and allows the researcher to use any algorithm for similarity searches and local QSAR modelling. Within this study we are using the following algorithms:

Neighbor identification

Similarity calculations are based on MolPrint2D fingerprints (Bender et al. 2004) from the OpenBabel chemoinformatics library (OBoyle et al. 2011).

The MolPrint2D fingerprint uses atom environments as molecular representation, which resemble basically the chemical concept of functional groups. For each atom in a molecule it represents the chemical environment using the atom types of connected atoms.

MolPrint2D fingerprints are generated dynamically from chemical structures and do not rely on predefined lists of fragments (such as OpenBabel FP3, FP4 or MACCs fingerprints or lists of toxocophores/toxicophobes). This has the advantage the they may capture substructures of toxicological relevance that are not included in other fingerprints. Preliminary experiments have shown that predictions with MolPrint2D fingerprints are indeed more accurate than other OpenBabel fingerprints.

From MolPrint2D fingerprints we can construct a feature vector with all atom environments of a compound, which can be used to calculate chemical similarities.

The chemical similarity between two compounds A and B is expressed as the proportion between atom environments common in both structures $A \cap B$ and the total number of atom environments $A \cup B$ (Jaccard/Tanimoto index, Equation 1).

$$
\begin{equation*}
\operatorname{sim}=\frac{|A \cap B|}{|A \cup B|} \tag{1}
\end{equation*}
$$

A threshold of $\operatorname{sim}>0.1$ is used for the identification of neighbors for local QSAR models. A low similarity threshold has the advantage, that predictions can be made even in the absence of closely related structures, and that completely unrelated compounds are still not included as neighbors. As neighbor contributions are weighted by similarity in local QSAR models, neighbors with low similarity have also a low impact on the prediction result.

Compounds with the same structure as the query structure are automatically eliminated from neighbors to obtain unbiased predictions in the presence of duplicates.

Local QSAR models and predictions

Only similar compounds (neighbors) above the threshold are used for local QSAR models. In this investigation we are using a weighted partial least squares regression (PLS) algorithm for the prediction of quantitative properties. First all uninformative fingerprints (i.e. features with identical values across all neighbors) are removed. The reamining set of features is used as descriptors for creating a local weighted PLS model with atom environments as descriptors and model similarities as weights. The pls method from the caret R package (Kuhn 2008) is used for this purpose. Models are trained with the default caret settings, optimizing the number of PLS components by bootstrap resampling.

Finally the local PLS model is applied to predict the activity of the query compound. The RMSE of bootstrapped model predictions is used to construct 95% prediction intervals at $1.96 *$ RMSE.

If PLS modelling or prediction fails, the program resorts to using the weighted mean of the neighbors LOAEL values, where the contribution of each neighbor is weighted by its similarity to the query compound.

Applicability domain

The applicability domain of lazar models is determined by the structural diversity of the training data. If no similar compounds are found in the training data no predictions will be generated. If the query compounds contains substructures that are not covered by training examples a warning is issued.

Local regression models consider neighbor similarities to the query compound, by weighting
the contribution of each neighbor is weighted by its similarity index. The variability of local model predictions is reflected in the prediction interval.

Validation

For the comparison of experimental variability with predictive accuracies we are using a test set of compounds that occur in both datasets. Unbiased read across predictions are obtained from the training dataset, by removing all information from the test compound from the training set prior to predictions. This procedure is hardcoded into the prediction algorithm in order to prevent validation errors. As we have only a single test set no model or parameter optimisations were performed in order to avoid overfitting a single dataset.

Results from 3 repeated 10-fold crossvalidations with independent training/test set splits are provided as additional information to the test set results.

The final model for production purposes was trained with all available LOAEL data (Mazzatorta and Swiss Federal Office datasets combined).

Results

Dataset comparison

The main objective of this section is to compare the content of both databases in terms of structural composition and LOAEL values, to estimate the experimental variability of LOAEL values and to establish a baseline for evaluating prediction performance.

Ches-Mapper analysis

We applied the visualization tool CheS-Mapper (Chemical Space Mapping and Visualization in 3D, http://ches-mapper.org, (???)>tlein2012) to compare both datasets. CheS-Mapper
can be used to analyze the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. It embeds a dataset into 3D space, such that compounds with similar feature values are close to each other. CheS-Mapper is generic and can be employed with different kinds of features. Figure 1 shows an embedding that is based on physico-chemical (PC) descriptors.

Figure 1: Compounds from the Mazzatorta and the Swiss Federal Office dataset are highlighted in red and green. Compounds that occur in both datasets are highlighted in magenta.

Martin: please explain light colors at bottom of histograms

In this example, CheS-Mapper applied a principal components analysis to map compounds according to their physico-chemical (PC) feature values into 3D space. Both datasets have in general very similar PC feature values. As an exception, the Mazzatorta dataset includes most of the tiny compound structures: we have selected the 78 smallest compounds (with

10 atoms and less, marked with a blue box in the screen-shot) and found that 61 of these compounds occur in the Mazzatorta dataset, whereas only 19 are contained in the Swiss dataset (p-value 3.7E-7).

This result was confirmed for structural features (fingerprints) including MolPrint2D features that are utilized for model building in this work.

In general we concluded that both datasets are very similar, in terms of chemical structures and physico-chemical properties.

Distribution of functional groups

In order to confirm the results of CheS-Mapper analysis we have evaluated the frequency of functional groups from the OpenBabel FP4 fingerprint. Figure 2 shows the frequency of functional groups in both datasets. 139 functional groups with a frequency >25 are depicted, the complete table for all functional groups can be found in the data directory of the supplemental material (data/functional-groups.csv).

Experimental variability versus prediction uncertainty

Duplicated LOAEL values can be found in both datasets and there is a substantial number of 155 compounds occurring in both datasets. These duplicates allow us to estimate the variability of experimental results within individual datasets and between datasets.

Intra dataset variability

m.dupsmi <- unique(m\$SMILES[duplicated(m\$SMILES)])
s.dupsmi <- unique(s\$SMILES [duplicated(s\$SMILES)])
c.dupsmi <- unique(c\$SMILES[duplicated(c\$SMILES)])

Figure 2: Frequency of functional groups.

```
m.dup <- m[m$SMILES %in% m.dupsmi,]
    s.dup <- s[s$SMILES %in% s.dupsmi,]
    c.dup <- c[c$SMILES %in% c.dupsmi,]
    m.dupnr <- length(m.dupsmi)
    s.dupnr <- length(s.dupsmi)
    c.dupnr <- length(c.dupsmi)
    #m.dup
    #m.dup$LOAEL
    #m.dup$SMILES
    m.dup$sd <- ave(m.dup$LOAEL,m.dup$SMILES,FUN=sd)
    s.dup$sd <- ave(s.dup$LOAEL,s.dup$SMILES,FUN=sd)
    c.dup$sd <- ave(c.dup$LOAEL, c.dup$SMILES,FUN=sd)
    t$sd <- ave(t$LOAEL,t$SMILES,FUN=sd)
    p = t.test(m.dup$sd,s.dup$sd)$p.value
```

The Mazzatorta dataset has 567 LOAEL values for 445 unique structures, 93 compounds have multiple measurements with a mean standard deviation of $0.56 \mathrm{mmol} / \mathrm{kg}$ _bw $/$ day $(0.32$ $\log 10$ units Mazzatorta et al. (2008), Figure 3).

The Swiss Federal Office dataset has 493 rat LOAEL values for 381 unique structures, 91 compounds have multiple measurements with a mean standard deviation of $0.59 \mathrm{mmol} / \mathrm{kg}$ _bw/day (0.29 $\log 10$ units).

Standard deviations of both datasets do not show a statistically significant difference with a p-value (t-test) of 0.21 . The combined test set has a mean standard deviation of 0.55
$\mathrm{mmol} / \mathrm{kg}$ _bw/day (0.33 log10 units).

Figure 3: Distribution and variability of LOAEL values in both datasets. Each vertical line represents a compound, dots are individual LOAEL values.

Inter dataset variability

Figure 4 shows the experimental LOAEL variability of compounds occurring in both datasets (i.e. the test dataset) colored in red (experimental). This is the baseline reference for the comparison with predicted values.

LOAEL correlation between datasets

Figure 5 depicts the correlation between LOAEL values from both datasets. As both datasets contain duplicates we are using medians for the correlation plot and statistics. Please note that the aggregation of duplicated measurements into a single median value hides a substantial
portion of the experimental variability. Correlation analysis shows a significant (p-value $<$ $2.2 \mathrm{e}-16)$ correlation between the experimental data in both datasets with $\mathrm{r}^{\wedge} 2: 0.52$, RMSE: 0.59

Local QSAR models

In order to compare the performance of in silico read across models with experimental variability we are using compounds that occur in both datasets as a test set (375 measurements, 155 compounds). lazar read across predictions were obtained for 155 compounds, 5 predictions failed, because no similar compounds were found in the training data (i.e. they were not covered by the applicability domain of the training data).

Experimental data and 95% prediction intervals did not overlap in 0 cases (0%), 0 predictions were too high and 0 predictions too low (after - $\log 10$ transformation).

Figure 4 shows a comparison of predicted with experimental values:

Correlation analysis was performed between individual predictions and the median of experimental data. All correlations are statistically highly significant with a p-value $<2.2 \mathrm{e}-16$. These results are presented in Figure 5 and Table 2. Please bear in mind that the aggregation of experimental data into a single median value hides experimental variability.

Table 1: Comparison of model predictions with experimental variability.

Comparison	r^{2}	RMSE
Mazzatorta vs. Swiss	0.52	0.59
Prediction vs. Test median	0.31	0.72

For a further assessment of model performance three independent 10 -fold cross-validations were performed. Results are summarised in Table 2 and Figure 6. All correlations of predicted

Figure 4: Comparison of experimental with predicted LOAEL values. Each vertical line represents a compound, dots are individual measurements (red) or predictions (green).

Figure 5: Correlation of experimental with predicted LOAEL values (test set)
with experimental values are statistically highly significant with a p-value $<2.2 \mathrm{e}-16$.

Table 2: Results from 3 independent 10-fold crossvalidations

r^{2}	RMSE	Nr. predicted
0.33	0.82	$631 / 671$
0.36	0.81	$633 / 671$
0.35	0.81	$636 / 671$

Discussion

Elena + Benoit

Dataset comparison

Our investigations clearly indicate that the Mazzatorta and Swiss Federal Office datasets are very similar in terms of chemical structures and properties and the distribution of experimental LOAEL values. The only minor difference that we have observed is that the Mazzatorta dataset has a larger number of highly toxic compounds Figure 3 and a larger amount of small molecules, than the Swiss Federal Office dataset. For this reason we have pooled both dataset into a single training dataset for read across predictions.

Figure 3 and Figure 5 and Table 1 show however considerable variability in the experimental data. High experimental variability has an impact on model building and on model validation. First it influences model quality by introducing noise into the training data, secondly it influences accuracy estimates because predictions have to be compared against noisy data where "true" experimental values are unknown. This will become obvious in the next section, where we compare predictions with experimental data.

Combined

Figure 6: Correlation of experimental with predicted LOAEL values (10-fold crossvalidation)

Local QSAR models

Figure 4, Figure 5, Table 1 and the fact that experimental data is covered in 100% by the lazar prediction interval shows that lazar read across predictions fit well into the experimental variability of LOAEL values.

It is tempting to increase the "quality" of predictions by performing parameter or algorithm optimisations, but this may lead to overfitted models, because the training set is known beforehand. As prediction accuracies correspond well to experimental accuracies, and the visual inspection of predictions does not show obvious anomalies, we consider our model as a robust method for LOAEL estimations. Prediction accuracies that are lower than experimental variability would be a clear sign for a model that is overfitted for a particular test set.

The graphical interface provides intuitive means of inspecting the rationales and data used for read across predictions. In order to show how such an inspection can help to identify problematic predictions we present a brief analysis of the two most severe mispredictions:

The compound with the largest deviation of prediction intervals is (amino-methylsulfanylphosphoryl)oxymethane (SMILES $\operatorname{COP}(=\mathrm{O})(\mathrm{SC}) \mathrm{N})$ with an experimental median of 2.69 and a prediction interval of $0.74+/-0.29$. In this case the prediction is based on two neighbors with very low similarity (0.1 and 0.13). Such cases can be eliminated by raising the similarity threshold for neighbors, but that could come at the cost of a larger number of unpredicted compounds. The graphical user interface shows for each prediction neighbors and similarities for a critical examination which should make the detection of similar cases rather straightforward.

The compound with second largest deviation of prediction intervals is Endosulfan (SMILES $\mathrm{O}=\mathrm{S} 1 \mathrm{OCC} 2 \mathrm{C}(\mathrm{CO} 1) \mathrm{C} 1(\mathrm{C}(\mathrm{C} 2(\mathrm{Cl}) \mathrm{C}(=\mathrm{C} 1 \mathrm{Cl}) \mathrm{Cl})(\mathrm{Cl}) \mathrm{Cl}) \mathrm{Cl})$ with an experimental median of 1.91 and a prediction interval of $3.43+/-1.52$. In this case the prediction is based on 5
neighbors with similarities between 0.33 and 0.4 . All of them are polychlorinated compound, but none of them contains sulfur or is a sulfurous acid ester. Again such problems are easily identified from a visual inspection of neighbors, and we want to stress the importance of inspecting rationales for predictions in the graphical interface before accepting a prediction.

Summary

- beware of over-optimisations and the race for "better" validation results
- reproducible research

References

Bender, Andreas, Hamse Y. Mussa, and Robert C. Glen, and Stephan Reiling. 2004. "Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Naïve Bayesian Classifier." Journal of Chemical Information and Computer Sciences 44 (1): 170-78. doi:10.1021/ci034207y.

Kuhn, Max. 2008. "Building Predictive Models in R Using the Caret Package." J. of Stat. Soft.

Maunz, Andreas, Martin Gütlein, Micha Rautenberg, David Vorgrimmler, Denis Gebele, and Christoph Helma. 2013. "Lazar: A Modular Predictive Toxicology Framework." Frontiers in Pharmacology 4. Frontiers Media SA. doi:10.3389/fphar.2013.00038.

Mazzatorta, Paolo, Manuel Dominguez Estevez, Myriam Coulet, and Benoit Schilter. 2008. "Modeling Oral Rat Chronic Toxicity." Journal of Chemical Information and Modeling 48 (10): 1949-54. doi:10.1021/ci8001974.

OBoyle, Noel M, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and

Geoffrey R Hutchison. 2011. "Open Babel: An Open Chemical Toolbox." Journal of Cheminformatics 3 (1). Springer Science and Business Media: 33. doi:10.1186/1758-2946-333.

Weininger, David. 1988. "SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules." Journal of Chemical Information and Computer Sciences 28 (1): 31-36. doi:10.1021/ci00057a005.

