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Introduction5

Elena + Benoit6

The quality and reproducibility of (Q)SAR and read-across predictions is a controversial7

topic in the toxicological risk-assessment community. Although model predictions can be8

validated with various procedures it is rarely possible to put the results into the context of9

experimental variability, because replicate experiments are rarely available.10

With missing information about the variability of experimental toxicity data it is hard to11

judge the performance of predictive models and it is tempting for model developments to use12

aggressive model optimisation methods that lead to impressive validation results, but also to13
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overfitted models with little practical relevance.14

In this study we intent to compare model predictions with experimental variability with15

chronic oral rat lowest adverse effect levels (LOAEL) as toxicity endpoint. We are using two16

datasets, one from (Mazzatorta et al. 2008) (Mazzatorta dataset) and one from the Swiss17

Federal Office of TODO (Swiss Federal Office dataset).18

Elena: do you have a reference and the name of the department?19

155 compounds are common in both datasets and we use them as a test set in our investigation.20

For the Mazzatorta and Swiss Federal Office datasets we will21

• compare the structural diversity of both datasets22

• compare the LOAEL values in both datasets23

• build prediction models24

• predict LOAELs of the training set25

• compare predictions with experimental variability26

With this investigation we also want to support the idea of reproducible research, by providing27

all datasets and programs that have been used to generate this manuscript under TODO28

creative/scientific commons? (datasets) and GPL (programs) licenses.29

A self-contained docker image with all program dependencies required for the reproduction30

of these results is available from TODO.31

Source code and datasets for the reproduction of this manuscript can be downloaded from32

the GitHub repository TODO. The lazar framework (Maunz et al. 2013) is also available33

under a GPL License from https://github.com/opentox/lazar.34

Elena: please check if this is publication strategy is ok for the Swiss Federal Office35
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Materials and Methods36

Datasets37

Mazzatorta dataset38

The first dataset (Mazzatorta dataset for further reference) originates from the publication39

of (Mazzatorta et al. 2008). It contains chronic (> 180 days) lowest observed effect levels40

(LOAEL) for rats (Rattus norvegicus) after oral (gavage, diet, drinking water) administration.41

The Mazzatorta dataset consists of 567 LOAEL values for 445 unique chemical structures.42

Swiss Federal Office dataset43

Elena + Swiss Federal Office contribution (input)44

The original Swiss Federal Office dataset has chronic toxicity data for rats, mice and multi45

generation effects. For the purpose of this study only rat LOAEL data with oral administration46

was used. This leads to the Swiss Federal Office dataset with 493 rat LOAEL values for r47

length(unique(s$SMILES)) unique chemical structures.48

Preprocessing49

Chemical structures (represented as SMILES (Weininger 1988)) in both datasets were checked50

for correctness. Syntactically incorrect and missing SMILES were generated from other51

identifiers (e.g names, CAS numbers). Unique smiles from the OpenBabel library (OBoyle et52

al. 2011) were used for the identification of duplicated structures.53

Studies with undefined or empty LOAEL entries were removed from the datasets. LOAEL54

values were converted to mmol/kg_bw/day units and rounded to five significant digits. For55

prediction, validation and visualisation purposes -log10 transformations are used.56
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Derived datasets57

Two derived datasets were obtained from the original datasets:58

The test dataset contains data of compounds that occur in both datasets. LOAEL values59

equal at five significant digits were considered as duplicates originating from the same60

study/publication and only one instance was kept in the test dataset. The test dataset has61

375 LOAEL values for 155 unique chemical structures.62

The training dataset is the union of the Mazzatorta and the Swiss Federal Office dataset63

and it is used to build predictive models. LOAEL duplicates were removed using the same64

criteria as for the test dataset. The training dataset has 998 LOAEL values for 671 unique65

chemical structures.66

Algorithms67

In this study we are using the modular lazar (lazy structure activity relationships) framework68

(Maunz et al. 2013) for model development and validation.69

lazar follows the following basic workflow: For a given chemical structure lazar70

• searches in a database for similar structures (neighbors) with experimental data,71

• builds a local QSAR model with these neighbors and72

• uses this model to predict the unknown activity of the query compound.73

This procedure resembles an automated version of read across predictions in toxicology, in74

machine learning terms it would be classified as a k-nearest-neighbor algorithm.75

Apart from this basic workflow lazar is completely modular and allows the researcher to use76

any algorithm for similarity searches and local QSAR modelling. Within this study we are77

using the following algorithms:78
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Neighbor identification79

Similarity calculations are based on MolPrint2D fingerprints (Bender et al. 2004) from the80

OpenBabel chemoinformatics library (OBoyle et al. 2011).81

The MolPrint2D fingerprint uses atom environments as molecular representation, which82

resemble basically the chemical concept of functional groups. For each atom in a molecule it83

represents the chemical environment using the atom types of connected atoms.84

MolPrint2D fingerprints are generated dynamically from chemical structures and do not rely85

on predefined lists of fragments (such as OpenBabel FP3, FP4 or MACCs fingerprints or lists86

of toxocophores/toxicophobes). This has the advantage the they may capture substructures87

of toxicological relevance that are not included in other fingerprints. Preliminary experiments88

have shown that predictions with MolPrint2D fingerprints are indeed more accurate than89

other OpenBabel fingerprints.90

From MolPrint2D fingerprints we can construct a feature vector with all atom environments91

of a compound, which can be used to calculate chemical similarities.92

The chemical similarity between two compounds A and B is expressed as the proportion93

between atom environments common in both structures A ∩ B and the total number of atom94

environments A ∪ B (Jaccard/Tanimoto index, Equation 1).95

sim = |A ∩ B|
|A ∪ B|

(1)

A threshold of sim > 0.1 is used for the identification of neighbors for local QSAR models.96

Compounds with the same structure as the query structure are eliminated from the neighbors97

to obtain unbiased predictions in the presence of duplicates.98
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Local QSAR models and predictions99

Only similar compounds (neighbors) above the threshold are used for local QSAR models. In100

this investigation we are using a weighted partial least squares regression (PLS) algorithm101

for the prediction of quantitative properties. First all fingerprint features with identical102

values across all neighbors are removed. The reamining set of features is used as descriptors103

for creating a local weighted PLS model with atom environments as descriptors and model104

similarities as weights. The pls method from the caret R package (Kuhn 2008) is used for105

this purpose. Models are trained with the default caret settings, optimizing the number of106

PLS components by bootstrap resampling.107

Finally the local PLS model is applied to predict the activity of the query compound. The108

RMSE of bootstrapped model predictions is used to construct 95% prediction intervals at109

1.96*RMSE.110

If PLS modelling or prediction fails, the program resorts to using the weighted mean of the111

neighbors LOAEL values, where the contribution of each neighbor is weighted by its similarity112

to the query compound.113

Applicability domain114

The applicability domain of lazar models is determined by the structural diversity of the115

training data. If no similar compounds are found in the training data no predictions will be116

generated. If the query compounds contains substructures that are not covered by training117

examples a warning is issued.118

Local regression models consider neighbor similarities to the query compound, by weighting119

the contribution of each neighbor is weighted by its similarity index. The variability of local120

model predictions is reflected in the prediction interval.121
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Validation122

For the comparison of experimental variability with predictive accuracies we are using a test123

set of compounds that occur in both datasets. Unbiased read across predictions are obtained124

from the training dataset, by removing all information from the test compound from the125

training set prior to predictions. This procedure is hardcoded into the prediction algorithm126

in order to prevent validation errors. As we have only a single test set no model or parameter127

optimisations were performed in order to avoid overfitting a single dataset.128

Results from 3 repeated 10-fold crossvalidations with independent training/test set splits are129

provided as additional information to the test set results.130

Results131

Dataset comparison132

The main objective of this section is to compare the content of both databases in terms133

of structural composition and LOAEL values, to estimate the experimental variability of134

LOAEL values and to establish a baseline for evaluating prediction performance.135

Ches-Mapper analysis136

We applied the visualization tool CheS-Mapper (Chemical Space Mapping and Visualization137

in 3D, http://ches-mapper.org, Gütlein, Karwath, and Kramer (2012)) to compare both138

datasets. CheS-Mapper can be used to analyze the relationship between the structure of139

chemical compounds, their physico-chemical properties, and biological or toxic effects. It140

embeds a dataset into 3D space, such that compounds with similar feature values are close141

to each other. CheS-Mapper is generic and can be employed with different kinds of features.142

Figure 1 shows an embedding that is based on physico-chemical (PC) descriptors.143
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Figure 1: Compounds from the Mazzatorta and the Swiss Federal Office dataset are highlighted
in red and green. Compounds that occur in both datasets are highlighted in magenta.

8



Martin: please explain light colors at bottom of histograms144

In this example, CheS-Mapper applied a principal components analysis to map compounds145

according to their physico-chemical (PC) feature values into 3D space. Both datasets have in146

general very similar PC feature values. As an exception, the Mazzatorta dataset includes147

most of the tiny compound structures: we have selected the 78 smallest compounds (with148

10 atoms and less, marked with a blue box in the screen-shot) and found that 61 of these149

compounds occur in the Mazzatorta dataset, whereas only 19 are contained in the Swiss150

dataset (p-value 3.7E-7).151

This result was confirmed for structural features (fingerprints) including MolPrint2D features152

that are utilized for model building in this work.153

In general we concluded that both datasets are very similar, in terms of chemical structures154

and physico-chemical properties.155

Distribution of functional groups156

In order to confirm the results of CheS-Mapper analysis we have evaluated the frequency157

of functional groups from the OpenBabel FP4 fingerprint. Figure 2 shows the frequency158

of functional groups in both datasets. 139 functional groups with a frequency > 25 are159

depicted, the complete table for all functional groups can be found in the data directory of160

the supplemental material (data/functional-groups.csv).161

Experimental variability versus prediction uncertainty162

Duplicated LOAEL values can be found in both datasets and there is a substantial number163

of 155 compounds occurring in both datasets. These duplicates allow us to estimate the164

variability of experimental results within individual datasets and between datasets.165
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Figure 2: Frequency of functional groups.
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Intra dataset variability166

The Mazzatorta dataset has 567 LOAEL values for 445 unique structures, 93 compounds167

have multiple measurements with a mean standard deviation of 0.32 log10 units (Mazzatorta168

et al. (2008), Figure 3).169

The Swiss Federal Office dataset has 493 rat LOAEL values for 381 unique structures, 91170

compounds have multiple measurements with a mean standard deviation of 0.29 log10 units.171

Standard deviations of both datasets do not show a statistically significant difference with a172

p-value (t-test) of 0.21. The combined test set has a mean standard deviation of 0.33 log10173

units.174
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Figure 3: Distribution and variability of LOAEL values in both datasets. Each vertical line
represents a compound, dots are individual LOAEL values.

Inter dataset variability175
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Figure 4 shows the experimental LOAEL variability of compounds occurring in both datasets176

(i.e. the test dataset) colored in red (experimental). This is the baseline reference for the177

comparison with predicted values.178

LOAEL correlation between datasets179

Figure 5 depicts the correlation between LOAEL values from both datasets. As both datasets180

contain duplicates we are using medians for the correlation plot and statistics. Please note181

that the aggregation of duplicated measurements into a single median value hides a substantial182

portion of the experimental variability. Correlation analysis shows a significant (p-value <183

2.2e-16) correlation between the experimental data in both datasets with rˆ2: 0.49, RMSE:184

1.41185

Local QSAR models186

In order to compare the performance of in silico read across models with experimental variabil-187

ity we are using compounds that occur in both datasets as a test set (375 measurements, 155188

compounds). lazar read across predictions were obtained for 155 compounds, 8 predictions189

failed, because no similar compounds were found in the training data (i.e. they were not190

covered by the applicability domain of the training data).191

Experimental data and 95% prediction intervals did not overlap in 13 cases (9%), 8 predictions192

were too high and 5 predictions too low (after -log10 transformation).193

Figure 4 shows a comparison of predicted with experimental values:194

Correlation analysis was performed between individual predictions and the median of exper-195

imental data. All correlations are statistically highly significant with a p-value < 2.2e-16.196

These results are presented in Figure 5 and Table 2. Please bear in mind that the aggregation197

of experimental data into a single median value hides experimental variability.198
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Table 1: Comparison of model predictions with experimental variability.

Comparison r2 RMSE

Mazzatorta vs. Swiss 0.49 1.41

Prediction vs. Test median 0.4 1.47
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For a further assessment of model performance three independent 10-fold cross-validations199

were performed. Results are summarised in Table 2 and Figure 6. All correlations of predicted200

with experimental values are statistically highly significant with a p-value < 2.2e-16.201

Table 2: Results from 3 independent 10-fold crossvalidations

r2 RMSE Nr. predicted

0.4 1.8 630/671

0.38 1.84 631/671

0.4 1.81 635/671

Discussion202

Elena + Benoit203

Dataset comparison204

Our investigations clearly indicate that the Mazzatorta and Swiss Federal Office datasets are205

very similar in terms of chemical structures and properties and the distribution of experimental206

LOAEL values. The only minor difference that we have observed is that the Mazzatorta207

dataset has a larger number of highly toxic compounds Figure 3 and a larger amount of small208

molecules, than the Swiss Federal Office dataset. For this reason we have pooled both dataset209

into a single training dataset for read across predictions.210

Figure 3 and Figure 5 and Table 1 show however considerable variability in the experimental211

data. High experimental variability has an impact on model building and on model validation.212

First it influences model quality by introducing noise into the training data, secondly it213

influences accuracy estimates because predictions have to be compared against noisy data214
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Figure 6: Correlation of experimental with predicted LOAEL values (10-fold crossvalidation)
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where “true” experimental values are unknown. This will become obvious in the next section,215

where we compare predictions with experimental data.216

Local QSAR models217

Figure 4, Figure 5, Table 1 and the fact that experimental data is covered in 91% by the lazar218

prediction interval shows that lazar read across predictions fit well into the experimental219

variability of LOAEL values.220

It is tempting to increase the “quality” of predictions by performing parameter or algorithm221

optimisations, but this may lead to overfitted models, because the training set is known222

beforehand. As prediction accuracies correspond well to experimental accuracies, and the223

visual inspection of predictions does not show obvious anomalies, we consider our model224

as a robust method for LOAEL estimations. Prediction accuracies that are lower than225

experimental variability would be a clear sign for a model that is overfitted for a particular226

test set.227

The graphical interface provides intuitive means of inspecting the rationales and data used228

for read across predictions. In order to show how such an inspection can help to identify229

problematic predictions we present a brief analysis of the two most severe mispredictions:230

The compound with the largest deviation of prediction intervals is (amino-methylsulfanyl-231

phosphoryl)oxymethane (SMILES COP(=O)(SC)N) with an experimental median of 2.69232

and a prediction interval of 0.48 +/- 0.59. In this case the prediction is based on two233

neighbors with very low similarity (0.1 and 0.13). Such cases can be eliminated by raising234

the similarity threshold for neighbors, but that could come at the cost of a larger number of235

unpredicted compounds. The graphical user interface shows for each prediction neighbors236

and similarities for a critical examination which should make the detection of similar cases237

rather straightforward.238
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The compound with second largest deviation of prediction intervals is Endosulfan (SMILES239

O=S1OCC2C(CO1)C1(C(C2(Cl)C(=C1Cl)Cl)(Cl)Cl)Cl) with an experimental median of240

1.91 and a prediction interval of 3.64 +/- 0.45. In this case the prediction is based on 5241

neighbors with similarities between 0.33 and 0.4. All of them are polychlorinated compound,242

but none of them contains sulfur or is a sulfurous acid ester. Again such problems are easily243

identified from a visual inspection of neighbors, and we want to stress the importance of244

inspecting rationales for predictions in the graphical interface before accepting a prediction.245

Summary246

• beware of over-optimisations and the race for “better” validation results247

• reproducible research248
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