
Modeling Chronic Toxicity: A comparison of experimental1

variability with read across predictions2

Christoph Helma1 David Vorgrimmler1 Denis Gebele1
3

Martin Gütlein2 Benoit Schilter3 Elena Lo Piparo3
4

December 20, 20175

Abstract6

This study compares the accuracy of (Q)SAR/read-across predictions with the experimental7

variability of chronic LOAEL values from in vivo experiments. We could demonstrate that8

predictions of the lazar lazar algrorithm within the applicability domain of the training data9

have the same variability as the experimental training data. Predictions with a lower similarity10

threshold (i.e. a larger distance from the applicability domain) are also significantly better11

than random guessing, but the errors to be expected are higher and a manual inspection of12

prediction results is highly recommended.13

1 in silico toxicology gmbh, Basel, Switzerland14

2 Inst. f. Computer Science, Johannes Gutenberg Universität Mainz, Germany15

3 Chemical Food Safety Group, Nestlé Research Center, Lausanne, Switzerland16

Introduction17

Relying on standard animal toxicological testing for chemical hazard identification and characteri-18

zation is increasingly questioned on both scientific and ethical grounds. In addition, it appears19
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obvious that from a resource perspective, the capacity of standard toxicology to address the safety20

of thousands of untested chemicals (Fowler, Savage, and Mendez 2011) to which human may be21

exposed is very limited. It has also been recognized that getting rapid insight on toxicity of chemi-22

cals in case of emergency safety incidents or for early prioritization in research and development23

(safety by design) is a big challenge mainly because of the time and cost constraints associated with24

the generation of relevant animal data. In this context, alternative approaches to obtain timely25

and fit-for-purpose toxicological information are being developed. Amongst others, non-testing,26

structure-activity based in silico toxicology methods (also called computational toxicology) are27

considered highly promising. Importantly, they are raising more and more interests and getting28

increased acceptance in various regulatory (e.g. (ECHA 2008, EFSA (2016), EFSA (2014), Health29

Canada (2016), OECD (2015))) and industrial (e.g. (Stanton and Krusezewski 2016, Lo Piparo et30

al. (2011))) frameworks.31

For a long time already, computational methods have been an integral part of pharmaceutical32

discovery pipelines, while in chemical food safety their actual potentials emerged only recently (Lo33

Piparo et al. 2011). In this later field, an application considered critical is in the establishment of34

levels of safety concern in order to rapidly and efficiently manage toxicologically uncharacterized35

chemicals identified in food. This requires a risk-based approach to benchmark exposure with a36

quantitative value of toxicity relevant for risk assessment (Schilter et al. 2014). Since most of37

the time chemical food safety deals with life-long exposures to relatively low levels of chemicals,38

and because long-term toxicity studies are often the most sensitive in food toxicology databases,39

predicting chronic toxicity is of prime importance. Up to now, read across and quantitative40

structure-activity relationship (QSAR) have been the most used in silico approaches to obtain41

quantitative predictions of chronic toxicity.42

The quality and reproducibility of (Q)SAR and read-across predictions has been a continuous and43

controversial topic in the toxicological risk-assessment community. Although model predictions44

can be validated with various procedures, to review results in context of experimental variability45

has actually been rarely done or attempted. With missing information about the variability of46
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experimental toxicity data it is hard to judge the performance of predictive models objectively47

and it is tempting for model developers to use aggressive model optimisation methods that lead to48

impressive validation results, but also to overfitted models with little practical relevance.49

In the present study, automatic read-across like models were built to generate quantitative50

predictions of long-term toxicity. Two databases compiling chronic oral rat lowest adverse effect51

levels (LOAEL) as endpoint were used. An early review of the databases revealed that many52

chemicals had at least two independent studies/LOAELs. These studies were exploited to generate53

information on the reproducibility of chronic animal studies and were used to evaluate prediction54

performance of the models in the context of experimental variability.55

An important limitation often raised for computational toxicology is the lack of transparency on56

published models and consequently on the difficulty for the scientific community to reproduce57

and apply them. To overcome these issues, source code for all programs and libraries and the58

databases that have been used to generate this manuscript are made available under GPL3 licenses.59

Databases and compiled programs with all dependencies for the reproduction of results in this60

manuscript are available as a self-contained docker image. All data, tables and figures in this61

manuscript was generated directly from experimental results using the R package knitR. A single62

command repeats all experiments (possibly with different settings) and updates the manuscript63

with the new results.64

Materials and Methods65

The following sections give a high level overview about algorithms and datasets used for this study.66

In order to provide unambiguous references to algorithms and datasets, links to source code and67

data sources are included in the text.68
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Datasets69

Nestlé database70

The first database (Nestlé database for further reference) originates from the publication of (P.71

Mazzatorta et al. 2008). It contains chronic (> 180 days) lowest observed effect levels (LOAEL)72

for rats (Rattus norvegicus) after oral (gavage, diet, drinking water) administration. The Nestlé73

database consists of 567 LOAEL values for 445 unique chemical structures. The Nestlé database74

can be obtained from the following GitHub links:75

• original data: https://github.com/opentox/loael-paper/blob/submission/data/LOAEL_mg_76

corrected_smiles_mmol.csv77

• unique smiles: https://github.com/opentox/loael-paper/blob/submission/data/mazzatorta.78

csv79

• -log10 transfomed LOAEL: https://github.com/opentox/loael-paper/blob/submission/data/80

mazzatorta_log10.csv.81

Swiss Food Safety and Veterinary Office (FSVO) database82

Publicly available data from pesticide evaluations of chronic rat toxicity studies from the European83

Food Safety Authority (EFSA) (EFSA 2014), the Joint FAO/WHO Meeting on Pesticide Residues84

(JMPR) (WHO 2011) and the US EPA (US EPA 2011) were compiled to form the FSVO-database.85

Only studies providing both an experimental NOAEL and an experimental LOAEL were included.86

The LOAELs were taken as they were reported in the evaluations. Further details on the database87

are described elsewhere (Zarn, Engeli, and Schlatter 2011, Zarn, Engeli, and Schlatter (2013)).88

The FSVO-database consists of 493 rat LOAEL values for 381 unique chemical structures. It can89

be obtained from the following GitHub links:90

• original data: https://github.com/opentox/loael-paper/blob/submission/data/NOAEL-LOAEL_91

SMILES_rat_chron.csv92
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• unique smiles and mmol/kg_bw/day units: https://github.com/opentox/loael-paper/blob/93

submission/data/swiss.csv94

• -log10 transfomed LOAEL: https://github.com/opentox/loael-paper/blob/submission/data/95

swiss_log10.csv96

Preprocessing97

Chemical structures (represented as SMILES (Weininger 1988)) in both databases were checked for98

correctness. When syntactically incorrect or missing SMILES were generated from other identifiers99

(e.g names, CAS numbers). Unique smiles from the OpenBabel library (OBoyle et al. 2011) were100

used for the identification of duplicated structures.101

Studies with undefined or empty LOAEL entries were removed from the databases LOAEL values102

were converted to mmol/kg_bw/day units and rounded to five significant digits. For prediction,103

validation and visualisation purposes -log10 transformations are used.104

Derived datasets105

Two derived datasets were obtained from the original databases:106

The test dataset contains data from compounds that occur in both databases. LOAEL values equal107

at five significant digits were considered as duplicates originating from the same study/publication108

and only one instance was kept in the test dataset. The test dataset has 375 LOAEL values for109

155 unique chemical structures and was used for110

• evaluating experimental variability111

• comparing model predictions with experimental variability.112

The training dataset is the union of the Nestlé and the FSVO databases and it was used to build113

predictive models. LOAEL duplicates were removed using the same criteria as for the test dataset.114

The training dataset has 998 LOAEL values for 671 unique chemical structures.115
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Algorithms116

In this study we are using the modular lazar (lazy structure activity relationships) framework (A.117

Maunz et al. 2013) for model development and validation. The complete lazar source code can118

be found on GitHub.119

lazar follows the following basic workflow:120

For a given chemical structure lazar121

• searches in a database for similar structures (neighbors) with experimental data,122

• builds a local QSAR model with these neighbors and123

• uses this model to predict the unknown activity of the query compound.124

This procedure resembles an automated version of read across predictions in toxicology, in machine125

learning terms it would be classified as a k-nearest-neighbor algorithm.126

Apart from this basic workflow lazar is completely modular and allows the researcher to use any127

algorithm for similarity searches and local QSAR modelling. Within this study we are using the128

following algorithms:129

Neighbor identification130

Similarity calculations are based on MolPrint2D fingerprints (Bender et al. 2004) from the131

OpenBabel chemoinformatics library (OBoyle et al. 2011).132

The MolPrint2D fingerprint uses atom environments as molecular representation, which resemble133

basically the chemical concept of functional groups. For each atom in a molecule it represents the134

chemical environment using the atom types of connected atoms.135

MolPrint2D fingerprints are generated dynamically from chemical structures and do not rely136

on predefined lists of fragments (such as OpenBabel FP3, FP4 or MACCs fingerprints or lists137

of toxocophores/toxicophobes). This has the advantage the they may capture substructures138
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of toxicological relevance that are not included in other fingerprints. Unpublished experiments139

have shown that predictions with MolPrint2D fingerprints are indeed more accurate than other140

OpenBabel fingerprints.141

From MolPrint2D fingerprints we can construct a feature vector with all atom environments of a142

compound, which can be used to calculate chemical similarities.143

The chemical similarity between two compounds A and B is expressed as the proportion between144

atom environments common in both structures A ∩ B and the total number of atom environments145

A ∪ B (Jaccard/Tanimoto index, Equation 1).146

sim = |A ∩ B|
|A ∪ B|

(1)

The threshold selection is a trade-off between prediction accuracy (high threshold) and the number147

of predictable compounds (low threshold). As it is in many practical cases desirable to make148

predictions even in the absence of closely related neighbors, we follow a tiered approach:149

First a similarity threshold of 0.5 is used to collect neighbors, to create a local QSAR model and150

to make a prediction for the query compound. If any of this steps fail, the procedure is repeated151

with a similarity threshold of 0.2 and the prediction is flagged with a warning that it might be out152

of the applicability domain of the training data.153

Compounds with the same structure as the query structure are automatically eliminated from154

neighbors to obtain unbiased predictions in the presence of duplicates.155

Local QSAR models and predictions156

Only similar compounds (neighbors) above the threshold are used for local QSAR models. In157

this investigation we are using weighted random forests regression (RF) for the prediction of158

quantitative properties. First all uninformative fingerprints (i.e. features with identical values159

across all neighbors) are removed. The remaining set of features is used as descriptors for creating160
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a local weighted RF model with atom environments as descriptors and model similarities as weights.161

The RF method from the caret R package (Kuhn 2008) is used for this purpose. Models are162

trained with the default caret settings, optimizing the number of RF components by bootstrap163

resampling.164

Finally the local RF model is applied to predict the activity of the query compound. The RMSE of165

bootstrapped local model predictions is used to construct 95% prediction intervals at 1.96*RMSE.166

If RF modelling or prediction fails, the program resorts to using the weighted mean of the neighbors167

LOAEL values, where the contribution of each neighbor is weighted by its similarity to the query168

compound. In this case the prediction is also flagged with a warning.169

Applicability domain170

The applicability domain (AD) of lazar models is determined by the structural diversity of the171

training data. If no similar compounds are found in the training data no predictions will be172

generated. Warnings are issued if the similarity threshold has to be lowered from 0.5 to 0.2 in173

order to enable predictions and if lazar has to resort to weighted average predictions, because174

local random forests fail. Thus predictions without warnings can be considered as close to the175

applicability domain and predictions with warnings as more distant from the applicability domain.176

Quantitative applicability domain information can be obtained from the similarities of individual177

neighbors.178

Local regression models consider neighbor similarities to the query compound, by weighting the179

contribution of each neighbor is by its similarity. The variability of local model predictions is180

reflected in the 95% prediction interval associated with each prediction.181

Validation182

For the comparison of experimental variability with predictive accuracies we are using a test set183

of compounds that occur in both databases. Unbiased read across predictions are obtained from184
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the training dataset, by removing all information from the test compound from the training set185

prior to predictions. This procedure is hardcoded into the prediction algorithm in order to prevent186

validation errors. As we have only a single test set no model or parameter optimisations were187

performed in order to avoid overfitting a single dataset.188

Results from 3 repeated 10-fold crossvalidations with independent training/test set splits are189

provided as additional information to the test set results.190

The final model for production purposes was trained with all available LOAEL data (Nestlé and191

FSVO databases combined).192

Availability193

Public webinterface https://lazar.in-silico.ch194

lazar framework https://github.com/opentox/lazar (source code)195

lazar GUI https://github.com/opentox/lazar-gui (source code)196

Manuscript https://github.com/opentox/loael-paper (source code for the manuscript and valida-197

tion experiments)198

Docker image https://hub.docker.com/r/insilicotox/loael-paper/ (container with manuscript,199

validation experiments, lazar libraries and third party dependencies)200

Results201

Dataset comparison202

The main objective of this section is to compare the content of both databases in terms of structural203

composition and LOAEL values, to estimate the experimental variability of LOAEL values and to204

establish a baseline for evaluating prediction performance.205

Structural diversity206
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In order to compare the structural diversity of both databases we evaluated the frequency of207

functional groups from the OpenBabel FP4 fingerprint. Figure 1 shows the frequency of functional208

groups in both databases 139 functional groups with a frequency > 25 are depicted, the complete209

table for all functional groups can be found in the supplemental material at GitHub.210

Aromatic
1−3−Tautomerizable

Heterocyclic
Carboxylic acid derivative

Heteroaromatic
Arylchloride

1−5−Tautomerizable
Carbonic acid derivatives

Vinylogous ester
Alkylarylether

CH−acidic
Alkylfluoride

Phosphoric acid derivative
Alkylchloride

Amine
Trifluoromethyl

Amide
Diarylether

Sulfenic derivative
Nitrile
Nitro

Alcohol
Carboxylic acid

Alkene
Urethan

Dialkylether
Michael acceptor

Arylfluoride
Oxoarene

Chloroalkene
Secondary amide
Sulfonic derivative

Ketone
Imidolactone

Primary arom amine
Vinylogous halide

Phenol

0 100 200 300 400

Dataset

 Mazzatorta

 Swiss Federal Office

Figure 1: Frequency of functional groups.

This result was confirmed with a visual inspection using the CheS-Mapper (Chemical Space Mapping211

and Visualization in 3D, Gütlein, Karwath, and Kramer (2012)) tool. CheS-Mapper can be used212

to analyze the relationship between the structure of chemical compounds, their physico-chemical213
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properties, and biological or toxic effects. It depicts closely related (similar) compounds in 3D214

space and can be used with different kinds of features. We have investigated structural as well as215

physico-chemical properties and concluded that both databases are very similar, both in terms of216

chemical structures and physico-chemical properties.217

The only statistically significant difference between both databases, is that the Nestlé database218

contains more small compounds (61 structures with less than 11 atoms) than the FSVO-database219

(19 small structures, p-value 3.7E-7).220

Experimental variability versus prediction uncertainty221

Duplicated LOAEL values can be found in both databases and there is a substantial number of222

155 compounds with more than one LOAEL. These chemicals allow us to estimate the variability223

of experimental results within individual databases and between databases. Data with identical224

values (at five significant digits) in both databases were excluded from variability analysis, because225

it it likely that they originate from the same experiments.226

Intra database variability227

Both databases contain substances with multiple measurements, which allow the determination of228

experimental variabilities. For this purpose we have calculated the mean standard deviation of229

compounds with multiple measurements, which is roughly a factor of 2 for both databases.230

The Nestlé database has 567 LOAEL values for 445 unique structures, 93 compounds have231

multiple measurements with a mean standard deviation (-log10 transformed values) of 0.32 (0.56232

mg/kg_bw/day, 0.56 mmol/kg_bw/day) (P. Mazzatorta et al. (2008), Figure 2).233

The FSVO database has 493 rat LOAEL values for 381 unique structures, 91 compounds have234

multiple measurements with a mean standard deviation (-log10 transformed values) of 0.29 (0.57235

mg/kg_bw/day, 0.59 mmol/kg_bw/day) (Figure 2).236

Standard deviations of both databases do not show a statistically significant difference with a237
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p-value (t-test) of 0.21. The combined test set has a mean standard deviation (-log10 transformed238

values) of 0.33 (0.56 mg/kg_bw/day, 0.55 mmol/kg_bw/day) (Figure 2).239
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Figure 2: Distribution and variability of compounds with multiple LOAEL values in both databases

Each vertical line represents a compound, dots are individual LOAEL values.

Inter database variability240

In order to compare the correlation of LOAEL values in both databases and to establish a reference241

for predicted values, we have investigated compounds, that occur in both databases.242

Figure 4 shows the experimental LOAEL variability of compounds occurring in both datasets243

(i.e. the test dataset) colored in blue (experimental). This is the baseline reference for the comparison244

with predicted values.245

Figure 3 depicts the correlation between LOAEL values from both databases. As both databases246

contain duplicates medians were used for the correlation plot and statistics. It should be kept in247

mind that the aggregation of duplicated measurements into a single median value hides a substantial248
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portion of the experimental variability. Correlation analysis shows a significant (p-value < 2.2e-16)249

correlation between the experimental data in both databases with rˆ2: 0.52, RMSE: 0.59250
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Figure 3: Correlation of median LOAEL values from Nestlé and FSVO databases. Data with

identical values in both databases was removed from analysis.

Local QSAR models251

In order to compare the performance of in silico read across models with experimental variability we252

are using compounds with multiple measurements as a test set (375 measurements, 155 compounds).253

lazar read across predictions were obtained for 155 compounds, 37 predictions failed, because no254

similar compounds were found in the training data (i.e. they were not covered by the applicability255

domain of the training data).256

Experimental data and 95% prediction intervals overlapped in 100% of the test examples.257

Figure 4 shows a comparison of predicted with experimental values. Most predicted values were258
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located within the experimental variability.259
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Figure 4: Comparison of experimental with predicted LOAEL values. Each vertical line represents

a compound, dots are individual measurements (blue), predictions (green) or predictions far from

the applicability domain, i.e. with warnings (red).

Correlation analysis was performed between individual predictions and the median of experimental260

data. All correlations are statistically highly significant with a p-value < 2.2e-16. These results261

are presented in Figure 5 and Table 2. Please bear in mind that the aggregation of multiple262

measurements into a single median value hides experimental variability.263

Table 1: Comparison of model predictions with experimental variability.

Comparison r2 RMSE Nr. predicted

Nestlé vs. FSVO database 0.52 0.59

AD close predictions vs. test median 0.48 0.56 34/155

AD distant predictions vs. test median 0.38 0.68 84/155
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Comparison r2 RMSE Nr. predicted

All predictions vs. test median 0.4 0.65 118/155

For a further assessment of model performance three independent 10-fold cross-validations were264

performed. Results are summarised in Table 2 and Figure 6. All correlations of predicted with265

experimental values are statistically highly significant with a p-value < 2.2e-16. This is observed266

for compounds close and more distant to the applicability domain.267

Table 2: Results from 3 independent 10-fold crossvalidations

Predictions r2 RMSE Nr. predicted

AD close 0.61 0.58 102/671

AD distant 0.45 0.78 374/671

All 0.47 0.74 476/671

AD close 0.59 0.6 101/671

AD distant 0.45 0.77 376/671

All 0.47 0.74 477/671

AD close 0.59 0.57 93/671

AD distant 0.43 0.81 384/671

All 0.45 0.77 477/671
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Figure 5: Correlation of experimental with predicted LOAEL values (test set). Green dots indicate

predictions close to the applicability domain (i.e. without warnings), red dots indicate predictions

far from the applicability domain (i.e. with warnings).
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Figure 6: Correlation of predicted vs. measured values for three independent crossvalidations with

MP2D fingerprint descriptors and local random forest models.
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Discussion268

It is currently acknowledged that there is a strong need for toxicological information on the multiple269

thousands of chemicals to which human may be exposed through food. These include for examples270

many chemicals in commerce, which could potentially find their way into food (Stanton and271

Krusezewski 2016, Fowler, Savage, and Mendez (2011)), but also substances migrating from food272

contact materials (Grob et al. 2006), chemicals generated over food processing (Cotterill et al.273

2008), environmental contaminants as well as inherent plant toxicants (Schilter, Constable, and274

Perrin 2013). For the vast majority of these chemicals, no toxicological data is available and275

consequently insight on their potential health risks is very difficult to obtain. It is recognized that276

testing all of them in standard animal studies is neither feasible from a resource perspective nor277

desirable because of ethical issues associated with animal experimentation. In addition, for many278

of these chemicals, risk may be very low and therefore testing may actually be irrelevant. In this279

context, the identification of chemicals of most concern on which limited resource available should280

focused is essential and computational toxicology is thought to play an important role for that.281

In order to establish the level of safety concern of food chemicals toxicologically not characterized,282

a methodology mimicking the process of chemical risk assessment, and supported by computational283

toxicology, was proposed (Schilter et al. 2014). It is based on the calculation of margins of exposure284

(MoE) between predicted values of toxicity and exposure estimates. The level of safety concern of a285

chemical is then determined by the size of the MoE and its suitability to cover the uncertainties of286

the assessment. To be applicable, such an approach requires quantitative predictions of toxicological287

endpoints relevant for risk assessment. The present work focuses on prediction of chronic toxicity,288

a major and often pivotal endpoints of toxicological databases used for hazard identification and289

characterization of food chemicals.290

In a previous study, automated read-across like models for predicting carcinogenic potency were291

developed. In these models, substances in the training dataset similar to the query compounds292

are automatically identified and used to derive a quantitative TD50 value. The errors observed in293
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these models were within the published estimation of experimental variability (Lo Piparo et al.294

2014). In the present study, a similar approach was applied to build models generating quantitative295

predictions of long-term toxicity. Two databases compiling chronic oral rat lowest adverse effect296

levels (LOAEL) as endpoint were available from different sources. Our investigations clearly297

indicated that the Nestlé and FSVO databases are very similar in terms of chemical structures and298

properties as well as distribution of experimental LOAEL values. The only significant difference299

that we observed was that the Nestlé one has larger amount of small molecules, than the FSVO300

database. For this reason we pooled both databases into a single training dataset for read across301

predictions.302

An early review of the databases revealed that 155 out of the 671 chemicals available in the training303

datasets had at least two independent studies/LOAELs. These studies were exploited to generate304

information on the reproducibility of chronic animal studies and were used to evaluate prediction305

performance of the models in the context of experimental variability.Considerable variability in the306

experimental data was observed. Study design differences, including dose selection, dose spacing307

and route of administration are likely explanation of experimental variability. High experimental308

variability has an impact on model building and on model validation. First it influences model309

quality by introducing noise into the training data, secondly it influences accuracy estimates310

because predictions have to be compared against noisy data where “true” experimental values311

are unknown. This will become obvious in the next section, where comparison of predictions312

with experimental data is discussed.The data obtained in the present study indicate that lazar313

generates reliable predictions for compounds within the applicability domain of the training data314

(i.e. predictions without warnings, which indicates a sufficient number of neighbors with similarity315

> 0.5 to create local random forest models). Correlation analysis shows that errors (RMSE) and316

explained variance (r2) are comparable to experimental variability of the training data.317

Predictions with a warning (neighbor similarity < 0.5 and > 0.2 or weighted average predictions)318

are more uncertain. However, they still show a strong correlation with experimental data, but319

the errors are ~ 20-40% larger than for compounds within the applicability domain (Figure 5320
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and Table 2). Expected errors are displayed as 95% prediction intervals, which covers 100% of321

the experimental data. The main advantage of lowering the similarity threshold is that it allows322

to predict a much larger number of substances than with more rigorous applicability domain323

criteria. As each of this prediction could be problematic, they are flagged with a warning to alert324

risk assessors that further inspection is required. This can be done in the graphical interface325

(https://lazar.in-silico.ch) which provides intuitive means of inspecting the rationales and data326

used for read across predictions.327

Finally there is a substantial number of chemicals (37), where no predictions can be made, because328

no similar compounds in the training data are available. These compounds clearly fall beyond the329

applicability domain of the training dataset and in such cases predictions should not be used. In330

order to expand the domain of applicability, the possibility to design models based on shorter, less331

than chonic studies should be studied. It is likely that more substances reflecting a wider chemical332

domain may be available. To predict such shorter duration endpoints would also be valuable for333

chronic toxicy since evidence suggest that exposure duration has little impact on the levels of334

NOAELs/LOAELs (Zarn, Engeli, and Schlatter 2011, Zarn, Engeli, and Schlatter (2013)).335

Elena: Should we add a GUI screenshot?336

Summary337

In conclusion, we could demonstrate that lazar predictions within the applicability domain of338

the training data have the same variability as the experimental training data. In such cases339

experimental investigations can be substituted with in silico predictions. Predictions with a lower340

similarity threshold can still give usable results, but the errors to be expected are higher and a341

manual inspection of prediction results is highly recommended.342
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