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The Ames mutagenicity test inSalmonella typhimuriumis a bacterial short-term in vitro assay aimed at
detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for
carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence
to make feasible the construction of reliable computational models for prediction of mutagenicity from the
molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model
and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401
mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316
nonmutagens). The overall error of this system on the external test set compounds is 15% (sensitivity)
15%, specificity) 15%), which is quantitatively similar to the experimental error of Ames test data (average
interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single
prediction is provided with a specific confidence level. The results obtained give confidence that this system
can be applied to support early and rapid evaluation of the level of mutagenicity concern.

INTRODUCTION

The aim of this investigation was the improvement of the
current in silico methodologies for the prediction of mu-
tagenicity. The term mutation refers to the induction of
permanent transmissible changes in the amount or structure
of the genetic material of cells or organisms. Since exposure
to mutagenic chemicals carries the risk of inducing germ-
line mutations with the possibility of inherited disorders and
the risk of somatic mutations including those leading to
cancer, testing mutagenic potential is considered an essential
step in the safety evaluation of chemicals. Currently, mu-
tagenicity is assessed through the application of a battery of
experimental in vitro and in vivo test systems. In the food
context, this approach has proved suitable to support the
safety of newly developed chemicals such as additives or
pesticides. However, incidental food contaminations requiring
rapid decisions and management in the absence of hard
toxicological data have highlighted the need to develop
alternative strategies, such as based on structure-activity
relationship (SAR), capable of providing early and reliable
information on potential mutagenic concern.

The Ames test1,2 is a short-term bacterial in vitro assay
detecting chemical induced point and frameshift mutations.
Most of the carcinogens acting by induction of genetic
damage are mutagenic in the Ames test. Therefore, it has
been extensively applied as a screening tool for establishing
an initial level of mutagenicity and carcinogenicity concern.
The National Toxicology Program (NTP) determined the
average interlaboratory reproducibility of a series of Ames

test data to be 85%.3 Since a large database including a wide
array of chemical structures and experimental conditions
(various bacterial strains used in absence or presence of
activating enzymes) is publicly available, the Ames test
appears as a promising candidate for developing the predic-
tive model of mutagenicity.

In the 1970s James and Elizabeth Millet introduced the
electrophilic theory4,5 and paved the way for the use of
structure-activity relationships (SAR) in the prediction of
mutagenicity and/or carcinogenicity. Later, Ashby and
Tennant6-9 catalogued mutagens on the basis of their
chemical structures, proposing a first list of 21 moieties
highly correlated with mutagenicity. Following these pioneer
works, several mutagenicity programs were developed. White
et al.10 challenged the most commonly used programs
(CASE/MULTICASE,11,12 DEREK,13,14 TOPKAT15,16) with
a test set of over 500 proprietary pharmaceuticals and
reported a concordance (accuracy) between 72% and 81%.
Two recent reviews17,18examining numerous (Q)SAR models
for noncongeneric chemicals reported similar results and
stressed the lack of sensitivity (the measure of the ability to
correctly identify true positives) as the main limitation of
these systems.

Recently, Benigni and Bossa19 summarized the efforts
aimed at expanding and/or refining the knowledge on the
structural alerts (SAs) of mutagenicity and acknowledged
their fundamental role in risk assessment. To date, the best
set of SAs of mutagenicity known was published by Kazius
et al.:20 starting from the original Ashby’s list, they assembled
a set of 29 toxicophores, together with associated detoxifying
substructures, able to classify the mutagenicity of the training
set with an accuracy of 82%.

Although SAs have always been the favorable method for
mutagenicity prediction, several other approaches, spanning
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the whole universe of artificial intelligence (AI) and QSAR,
have been successfully applied.18,21-27 Because of an im-
proved capacity to cover the space of training set, the
combination of different models into a hybrid system has
been known to perform at least as well as the best available
model.10,28,29 This triggered the idea of maximizing the
current capability of available system to predict Ames test
mutagenicity by integrating expert system SAR-based ap-
proaches and AI-based systems into a robust hybrid classifier
(RHC), with the ultimate goal to get as close as possible of
the reliability of experimental tests. In addition, the possibility
to attach a level of confidence to each prediction was studied.

MATERIALS AND METHODS

Mutagenicity Data Sets. The data set used for the
development of the system was assembled by Kazius et al.20

from the Chemical Carcinogenicity Research Information
System (CCRIS) database (http://toxnet.nlm.nih.gov), adopt-
ing a protocol, for ensuring a well-defined endpoint, and
quality criteria. Data were restricted to standard Ames tests
of Salmonella Typhimuriumstrains TA98, TA100, TA1535,
and either TA1537 or TA97 performed with the standard
plate method or the preincubation method,1 either with or
without a metabolic activation mixture. A compound was
categorized as mutagenic if at least one Ames test result was
positive. The final training set was formed by 4337 chemicals
(2401 mutagens and 1936 nonmutagens). The test set was
collected, harmonized, and cleaned by Young et al.30 using
several public sources including the U.S. EPA, NIH, and
the open literature. Chemicals that were present also in the
training set were deleted from the test set. In conclusion, a
test set of 753 compounds with corresponding molecular
structure and toxicity categorizations (437 mutagens and 316
nonmutagens) was constructed. Molecular structures were
represented by SMILES strings.31 We acknowledge that the
results here discussed, of course, reflect the data sets used,
which, in turn, depend on the availability and quality of Ames
test data. Nevertheless, we believe that the dimension of these
data sets can corroborate the reliability of the findings.

Structural Alerts. The list of SAs used in this study was
derived and validated by Kazius et al.20 Their work started
spotting eight SAs responsible for detecting 75% of all
mutagens in the training set. Then the structural complexity
of these general toxicophores was improved by combining
mechanistic knowledge gained from the literature, statistical
tests, and data mining. Eventually, they ended up with 29
toxicophores and some detoxifying substructures (i.e., sub-
structures inhibiting toxicophore action by, for example,
steric hindrance or by a distruption of the required electronic
charge distribution near the toxicophore), which were
encoded in SMARTS strings (http://www.daylight.com/
dayhtml/doc/theory/theory.smarts.html). In the following, we
will refer to such a model as an SA model (SAm).

Artificial Intelligence. The AI model (AIm) is based on
the LAZAR system (http://www.predictive-toxicology.org/
lazar/index.html) developed by C. Helma26,27 and uses the
training set as an inductive database that derives its predic-
tions from the experimental measurements of the neighbors
for a query structure with a modified k-nearest-neighbor
algorithm. The whole process can be summarized as fol-
lows: (i) linear fragments are generated automatically from

the data set using the molecular feature miner (MOLFEA32);
(ii) fragments relevant for the toxicity activity are selected;
(iii) redundant fragments are removed; and (iv) prediction
is obtained using a majority weighted vote from all neighbors
of the query structure with a similarity (Tanimoto similarity
score) above a predefined threshold.

Implementation. The two models (SAm and AIm) and
the RHC were implemented in C++ using OpenBabel
1.100.2 libraries (http://openbabel.sourceforge.net/wiki/
Main_Page). They were compiled with gcc on Windows
2000.

RESULTS AND DISCUSSION

The scheme of the hybrid system developed is shown in
Figure 1: SAm and AIm independently predict the mutage-
nicity of a given chemical, then results are combined by RHC
which returns the Ames prediction together with the confi-
dence level.

The performances of independent models and hybrid
system are reported in Table 1 and summarized by the
receiver operating characteristic (ROC) curve29 in Figure 2.

The performances are measured in terms of accuracy (the
overall percentage of correct positive and negative calls),
sensitivity (the measure of the ability to correctly identify
true positives), and specificity (the ratio of true negatives to
the sum of true negatives and false positives), where positive
and negative refer respectively to mutagenic and nonmu-
tagenic compounds.

The National Toxicological Program (NTP)3 assessed the
variability of different laboratories in reproducing measure-
ments (ring test). It was found that the concordance among
laboratories for a given chemical tested under code and under
strictly controlled protocols was 85%. This creates a bound-
ary condition for the internal performance and predictivity
of (Q)SAR models. If the variation in measurement is 15%,
it would be unrealistic to expect (Q)SAR models based on
those measurement to have higher predictivity. Therefore this

Figure 1. Scheme of the robust hybrid system (RHC).

Table 1. Overall Statistics of the Modelsa

training (4337) test (753)

accuracy
(%)

sensitivity
(%)

specificity
(%)

accuracy
(%)

sensitivity
(%)

specificity
(%)

SAm 81.7 83.6 77.7 80.5 82.2 78.2
AIm 81.8 83.6 79.5 78.5 77.2 80.4
RHC 88.7 91.1 85.6 85.3 85.4 85.1

a In brackets the number of compounds is reported.
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value can be regarded as the intrinsic experimental error
associated to this toxicological endpoint. Keeping this value
in mind, it can be noticed that both SAm and AIm are
exceptionally promising and not too far from the variability
of the experimental test. Nevertheless, none of the models
alone can reach the reliability of laboratory measurement of
mutagenicity. Only when the two models are combined into
the RHC can the accuracy in prediction be considered
quantitatively equivalent to experimental tests. Yet more, the
fact that both sensitivity and specificity equalize perfor-
mances of experimental determination of mutagenicity has
to be regarded as a proof of the exceptional reliability,
stability, and robustness of the proposed system.

The above appears clearer in the ROC graph (Figure 2),
where the diagonal line represents random models, whereas
the best models should cluster in the upper left corner
(sensitivity ) 1, specificity) 1). It can be easily noticed
that RHC is superior to others models and moreover
overcomes the characteristic limitations of previous in silico
programs,17 i.e. poor sensitivity. It must be mentioned that
the results here shown (Figure 2) depend on the composition
of the data sets, and the benchmark of programs’ perfor-
mances on different data sets is not good practice. More yet
this figure may not take into account the recent development
of commercial models. The general trends, however, clearly
emerge.

The second step of our study was to assess the accuracy
of the individual toxicophores and therefore the confidence
of every prediction (between zero and one). In order not to
bias RHC, this was carried out considering only the
compounds included in the test set, and the values were
calculated in the absence of compounds that contain multiple

SAs. Doing so, the actual predictivity of the individual
toxicophores is better reflected. The estimation of the
confidence of individual toxicophores and the associated
p-value are reported in Table 2.

The level of confidence represents the ratio of the number
of mutagens in the test set that contain only a given
toxicophore to the total number of all compounds in the test
set having only that particular moiety. In Table 2, thep-value
refers to the hypothesis that a random selection of an equal
number of compounds from the test set will have an accuracy
that equals or exceeds the accuracy of a given SA, so it can
be regarded as a test for assessing the reliability of the
accuracy of a given toxicophore: a small value (<0.05)
proves that the information is statistically relevant. Only six
moieties (specific aromatic nitro, specific aromatic amine,
nitrosamine, epoxide, aliphatic halide, polycyclic aromatic
system) were enough represented in the test set to allow a
reliable assessment of their confidence (bold in Table 2).
These toxicophores are in fact the most discriminative
moieties for mutagenicity and are comparable to the six
substructures recently selected using an elaborated graph-
based technique.33 The remaining SAs all together have a
confidence of 0.81 and ap-value of 0.00098.

A further analysis was performed on nonconsensus predic-
tions (18.4% in the training set, 17.1% in the test set), i.e.
when SAm and AIm are in disagreement. Table 3 sum-
marizes the performances of the individual models in
predicting the subsets of compounds with disagreeing results.

The dramatic worsening of the performances reflects the
uncertainty in predicting these compounds. We strove to
identify possible patterns among these chemical structures.
Particularly, we focused on the nonconsensus subsets of
compounds and investigated the possibility to find the reasons
for conflicting prediction and/or expert rules for the choice
of the best predictor. For these reasons, more than 60 000
fragments/substructures were generated using MOLFEA,32

the molecular fragment miner (MoFa),34 and Omega35,36

programs from the training set and analyzed by statistical
means. Unfortunately, apart from a few weak relationships
(p-value . 0.05) that could not be considered statistically
relevant, no clear patterns emerged.

Therefore, for the assessment of the confidence of the
prediction we decided to use the scheme summarized in
Table 4.

The confidence level and error associated with individual
toxicophores are summarized in Table 5, whereei is the error
associated with individual toxicophores.

In practice, according to the results of SAm and of AIm
four cases are possible:

(i) if both models predict the compound as nonmutagenic,
RHC considers it negative attaching a confidence equal to
the overall specificity of the system (0.85);

(ii) in case there is a consensus regarding the mutagenicity
of the given compound, RHC consider it as mutagen and
the confidence is equal to the sensitivity of RHC weighted
by the product of the individual error associated to the SAs
present in the compound.

(iii) when AIm detects a given compound as mutagenic,
but SAm does not, RHC considers it as mutagenic, but the
confidence is equal to the difference between SAm specificity
and AIm sensitivity on the nonconsensus subset.

Figure 2. The ROC graph shows the performances of a number
of models on different data set. In particular, SAm on training
(SAmtr) and test (SAmte) sets, AIm on training (AImtr), and test
(AImte) sets, RHC on training (RHCtr), test (RHCte) set; and
Ashby/Tennant moieties9 on training (AshbyTr) and test (AshbyTe)
sets; and MULTICASE (MCASEss), DEREK (DEREKss), TOP-
KAT (TOPKATss) on a data set of over 500 proprietary pharma-
ceuticals (as reported by Snyder and Smith17); and TOPKAT
(TOPKATw1, TOPKATw2), CASETOX (MCASEw1, MCASEw2),
DEREK (DEREKw1, DEREKw2) on two different data sets of 520
and 94 compounds, respectively (as reported by White et al.10).
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(iv) otherwise (SAm positive and AIm negative), RHC
considers the given compounds as mutagenic, but the product
of confidences of each individual toxicophore present is
adjusted by the specificity of AIm on the nonconsensus
subset.

In other words, in case of nonconsensus prediction, SAm
is preferred, because rather than being a merely statistical
model it is based on well-documented experimental evidence
and its accuracy is generally superior, but the confidence of
the prediction is accordingly lowered.

CONCLUSIONS

The system proposed in this study is an improved fast,
reliable, and easy method for the prediction of the Ames
test results. Starting from the molecular structures encoded
in SMILES notation, the results of each model are combined
and interpreted. Each single prediction is provided with a
confidence level that gives its statistical reliability rather than
quantifying actual errors. The overall error of the proposed
system, 15% (sensitivity) 85%, specificity) 85%), is lower
than any other predictive system (to author’s knowledge)
and is equal to the interlaboratory reproducibility of experi-
mental test, which can be regarded as the intrinsic error of
the test. These characteristics make the system suitable for
early determination of levels of genotoxicity concern.
Moreover, the use of two independent predictive models and
a confidence level allow risk assessors to depict worst and
best case scenarios, and the user can apply consensus, worst
case, or best case strategies, according to the issue faced.
The system is easily scalable allowing the integration with
other predictive models.
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