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The Ames mutagenicity test iBalmonella typhimuriunis a bacterial short-term in vitro assay aimed at
detecting the mutagenicity caused by chemicals. Mutagenicity is considered as an early alert for
carcinogenicity. After a number of decades, several (Q)SAR studies on this endpoint yielded enough evidence
to make feasible the construction of reliable computational models for prediction of mutagenicity from the
molecular structure of chemicals. In this study, we propose a combination of a fragment-based SAR model
and an inductive database. The hybrid system was developed using a collection of 4337 chemicals (2401
mutagens and 1936 nonmutagens) and tested using 753 independent compounds (437 mutagens and 316
nonmutagens). The overall error of this system on the external test set compounds is 15% (sesnsitivity
15%, specificity= 15%), which is quantitatively similar to the experimental error of Ames test data (average
interlaboratory reproducibility determined by the National Toxicology Program). Moreover, each single
prediction is provided with a specific confidence level. The results obtained give confidence that this system
can be applied to support early and rapid evaluation of the level of mutagenicity concern.

INTRODUCTION test data to be 85%Since a large database including a wide
array of chemical structures and experimental conditions
e i g (various bacterial strains used in absence or presence of
current in silico methodologies for the prediction of mu- activating enzymes) is publicly available, the Ames test

tagenicity. The term.mutation refgrs to the induction of appears as a promising candidate for developing the predic-
permanent transmissible changes in the amount or structurg;ye model of mutagenicity.

of the genetic material of cells or organisms. Since exposure | tha 1970s James and Elizabeth Millet introduced the
to mutagenic chemicals carries the risk of inducing germ- electrophilic theory and paved the way for the use of
line mutations with the possibility of inherited disorders and structure-activity relationships (SAR) in the prediction of
the risk of somatic mutations including those leading to mutagenicity and/or carcinogenicity. Later, Ashby and
cancer, testing mutagenic potential is c_onsidered an essentiafaynank-2 catalogued mutagens on the t;asis of their
step '.”.‘h‘? safety evaluation of chem|ga|§. Currently, mu- chemical structures, proposing a first list of 21 moieties
tagenicity is assessed through the application of a battery ofpjo correlated with mutagenicity. Following these pioneer
experimental in vitro and in vivo test systems. In the food |15 several mutagenicity programs were developed. White
context, this approach has proved suitable to support theet al?® challenged the most commonly used programs
safety of newly developed chemicals such as additives Or(CASE/MULTICASEllvlzDEREK13:14TOPKAT15’1‘3 with
pesticides. However, incidental food contaminations requiring ; tast set of over ’500 proprie’tary pharmaceuticals and

rapid decisions and management in the absence of harde,qteq 4 concordance (accuracy) between 72% and 81%.
toxicological data have highlighted the need to develop 1y recent review$-18examining numerous (Q)SAR models

al'clernatl\;? strategies, sug:lh afs bas%q on stlr “e“‘é‘*‘"tlY bl for noncongeneric chemicals reported similar results and
relationship (SAR), capable of providing early and reliable gegseq the lack of sensitivity (the measure of the ability to

information on potential mutagenic concern. correctly identify true positives) as the main limitation of
The Ames tedt? is a short-term bacterial in vitro assay these systems.
detecting chemical induced point and frameshift mutations.  Recently, Benigni and Bos¥asummarized the efforts
Most of the carcinogens acting by induction of genetic aimed at expanding and/or refining the knowledge on the
damage are mutagenic in the Ames test. Therefore, it hasstryctural alerts (SAs) of mutagenicity and acknowledged
been extensively applied as a screening tool for establishingtheir fundamental role in risk assessment. To date, the best
an initial level of mutagenicity and carcinogenicity concern. get of SAs of mutagenicity known was published by Kazius
The National Toxicology Program (NTP) determined the et al.20 starting from the original Ashby’s list, they assembled
average interlaboratory reproducibility of a series of Ames 3 set of 29 toxicophores, together with associated detoxifying

substructures, able to classify the mutagenicity of the training
* Corresponding author phonet41 (0) 21 7858252; fax+41 (0) 21 set with an accuracy of 82%.
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The aim of this investigation was the improvement of the
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the whole universe of artificial intelligence (Al) and QSAR,
have been successfully appligd 2’ Because of an im-
proved capacity to cover the space of training set, the
combination of different models into a hybrid system has
been known to perform at least as well as the best available
modeli®282° This triggered the idea of maximizing the
current capability of available system to predict Ames test «
mutagenicity by integrating expert system SAR-based ap- ()
proaches and Al-based systems into a robust hybrid classifier
(RHC), with the ultimate goal to get as close as possible of
the reliability of experimental tests. In addition, the possibility

to attach a level of confidence to each prediction was studied.

MATERIALS AND METHODS Figure 1. Scheme of the robust hybrid system (RHC).

Mutagenicity Data Sets. The data set used for the Table 1. Overall Statistics of the Models
development of the system was assembled by Kazius’et al. training (4337) test (753)
from the Chemical Carcinogenicity Research Information accuracy sensitivity specificity accuracy sensitivity specificity
System (CCRIS) database (http://toxnet.nim.nih.gov), adopt- (*0) (*0) (%) (%0) (%) (*0)
ing a protocol, for ensuring a well-defined endpoint, and SAm 817 83.6 77.7 80.5 82.2 78.2
Alm  81.8 83.6 79.5 78.5 77.2 80.4

quality criteria. Data were restricted to standard Ames tests
of Salmonella Typhimuriurstrains TA98, TA100, TA1535,
and either TA1537 or TA97 performed with the standard an brackets the number of compounds is reported.
plate method or the preincubation metHoeither with or
without a metabolic activation mixture. A compound was
categorized as mutagenic if at least one Ames test result Wa%
positive. The final training set was formed by 4337 chemicals
(2401 mutagens and 1936 nonmutagens). The test set wa:
collected, harmonized, and cleaned by Young éf aking
several public sources including the U.S. EPA, NIH, and
the open literature. Chemicals that were present also in the
training set were deleted from the test set. In conclusion, a
test set of 753 compounds with corresponding molecular _ _ ) o
structure and toxicity categorizations (437 mutagens and 3161‘1_00'2 libraries (http.//opent_)abel.§ourceforge.n_etIW|k|/
nonmutagens) was constructed. Molecular structures wereVin_Page). They were compiled with gcc on Windows
represented by SMILES stringsWe acknowledge that the 2000.
results here discussed, of course, reflect the data sets used,
which, in turn, depend on the availability and quality of Ames RESULTS AND DISCUSSION
test data. Nevertheless, we believe that the dimension of these The scheme of the hybrid system developed is shown in
data sets can corroborate the reliability of the findings. Figure 1: SAm and Alm independently predict the mutage-
Structural Alerts. The list of SAs used in this study was nicity of a given chemical, then results are combined by RHC
derived and validated by Kazius et?@[Their work started which returns the Ames prediction together with the confi-
spotting eight SAs responsible for detecting 75% of all dence level.
mutagens in the training set. Then the structural complexity The performances of independent models and hybrid
of these general toxicophores was improved by combining system are reported in Table 1 and summarized by the
mechanistic knowledge gained from the literature, statistical receiver operating characteristic (ROC) cifia Figure 2.
tests, and data mining. Eventually, they ended up with 29  The performances are measured in terms of accuracy (the
toxicophores and some detoxifying substructures (i.e., sub-overall percentage of correct positive and negative calls),
structures inhibiting toxicophore action by, for example, sensitivity (the measure of the ability to correctly identify
steric hindrance or by a distruption of the required electronic true positives), and specificity (the ratio of true negatives to
charge distribution near the toxicophore), which were the sum of true negatives and false positives), where positive
encoded in SMARTS strings (http://www.daylight.com/ and negative refer respectively to mutagenic and nonmu-
dayhtml/doc/theory/theory.smarts.html). In the following, we tagenic compounds.
will refer to such a model as an SA model (SAm). The National Toxicological Program (NTR3ssessed the
Artificial Intelligence. The Al model (Alm) is based on  variability of different laboratories in reproducing measure-
the LAZAR system (http://www.predictive-toxicology.org/ ments (ring test). It was found that the concordance among
lazar/index.html) developed by C. Helfid&” and uses the laboratories for a given chemical tested under code and under
training set as an inductive database that derives its predic-strictly controlled protocols was 85%. This creates a bound-
tions from the experimental measurements of the neighborsary condition for the internal performance and predictivity
for a query structure with a modified k-nearest-neighbor of (Q)SAR models. If the variation in measurement is 15%,
algorithm. The whole process can be summarized as fol- it would be unrealistic to expect (Q)SAR models based on
lows: (i) linear fragments are generated automatically from those measurement to have higher predictivity. Therefore this

RHC  88.7 91.1 85.6 85.3 85.4 85.1

he data set using the molecular feature miner (MOLFEA
i) fragments relevant for the toxicity activity are selected;
giii) redundant fragments are removed; and (iv) prediction
Is obtained using a majority weighted vote from all neighbors
of the query structure with a similarity (Tanimoto similarity
score) above a predefined threshold.

Implementation. The two models (SAm and Alm) and
the RHC were implemented in -t using OpenBabel
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1 , v v SAs. Doing so, the actual predictivity of the individual
RCHr toxicophores is better reflected. The estimation of the
RCHEe,  , confidence of |nd|V|d_uaI toxicophores and the associated
o8k sAmt™®, | p-value are reported in Table 2.
SAmte The level of confidence represents the ratio of the number
AshbyTr of mutagens in the test set that contain only a given
DEREKw2 _ © toxicophore to the total number of all compounds in the test
» *®ToPKATW2® TOPKATwI 1 set having only that particular moiety. In Table 2, fhealue
3 MCASEw1 .DAS""VT" refers to the hypothesis that a random selection of an equal
e N EREKss number of compounds from the test set will have an accuracy
@ 04 e “TOPKATSss | that equals or exceeds the accuracy of a given SA, so it can
MCASEw2 be regarded as a test for assessing the reliability of the
accuracy of a given toxicophore: a small value0(05)
“bgAEKw1 proves that the information is statistically relevant. Only six
0.2 1 moieties (specific aromatic nitro, specific aromatic amine,
nitrosamine, epoxide, aliphatic halide, polycyclic aromatic
system) were enough represented in the test set to allow a
0 ‘ ‘ ‘ reliable assessment of their confidence (bold in Table 2).
0 0.2 0.4 0.6 0.8 1 These toxicophores are in fact the most discriminative
1- specificity moieties for mutagenicity and are comparable to the six

Figure 2. The ROC graph shows the performances of a number substructures recently selected using an elaborated graph-

of models on different data set. In particular, SAm on training ; i
(SAmtr) and test (SAmte) sets, Alm on training (Almtr), and test based techniqu¥. The remaining SAs all together have a

(Almte) sets, RHC on training (RHCtr), test (RHCte) set; and confidence of 0'8_1 and p-value of 0.00098. )
Ashby/Tennant moieti€®n training (AshbyTr) and test (AshbyTe) A further analysis was performed on nonconsensus predic-

sets; and MULTICASE (MCASEss), DEREK (DEREKSss), TOP- tions (18.4% in the training set, 17.1% in the test set), i.e.

KAT (TOPKATSss) on a data set of over 500 proprietary pharma- i ; .
ceuticals (as reported by Snyder and SAfjthand TOPKAT when SAm and Alm are in disagreement. Table 3 sum

(TOPKATW1, TOPKATW2), CASETOX (MCASEW1, MCASEW2) marizes the performances of the individual models in
DEREK (DEREKw1, DEREKw2) on two different data sets of 520 Predicting the subsets of compounds with disagreeing results.

and 94 compounds, respectively (as reported by White ¥).al. The dramatic worsening of the performances reflects the
o _ uncertainty in predicting these compounds. We strove to
value can be regarded as the intrinsic experimental errorijgentify possible patterns among these chemical structures.
associated to this toxicological endpoint. Keeping this valué particularly, we focused on the nonconsensus subsets of
in mind, it can be noticed that both SAm and Alm are ¢ompounds and investigated the possibility to find the reasons
exceptionally promising and not too far from the variability o1 conflicting prediction and/or expert rules for the choice
of the experimental test. Nevertheless, none of the modelsyf the pest predictor. For these reasons, more than 60 000
alone can reach the reliability of laboratory measurement of fragments/substructures were generated using MOLEEA,
mutagenicity. Only when the two models are combined into the molecular fragment miner (MoF#),and Omeg# 3
the RHC can the accuracy in prediction be considered nrograms from the training set and analyzed by statistical
quantitatively equivalent to experimental tests. Yet more, the means. Unfortunately, apart from a few weak relationships
fact that both sensitivity and specificity equalize perfor- (p-value> 0.05) that could not be considered statistically
mances of experimental determination of mutagenicity has relevant, no clear patterns emerged.
to be regarded as a proof of the exceptional reliability, Therefore, for the assessment of the confidence of the

stability, and robustness of the proposed system. rediction we decided to use the scheme summarized in
The above appears clearer in the ROC graph (Figure 2)’$abI:a :1 W ! b . zed

where the diagonal line represents random models, whereas
the best models should cluster in the upper left corner
(sensitivity = 1, specificity= 1). It can be easily noticed
that RHC is superior to others models and moreover
overcomes the characteristic limitations of previous in silico !
programs i.e. poor sensitivity. It must be mentioned that [OUr cases are possible: _
the results here shown (Figure 2) depend on the composition () if both models predict the compound as nonmutagenic,
of the data sets, and the benchmark of programs’ perfor- RHC considers it negative attaching a confidence equal to
mances on different data sets is not good practice. More yetthe overall specificity of the system (0.85);
this figure may not take into account the recent development (i) in case there is a consensus regarding the mutagenicity
of commercial models. The general trends, however, clearly of the given compound, RHC consider it as mutagen and
emerge. the confidence is equal to the sensitivity of RHC weighted
The second step of our study was to assess the accuracy the product of the individual error associated to the SAs
of the individual toxicophores and therefore the confidence present in the compound.
of every prediction (between zero and one). In order not to  (iii) when Alm detects a given compound as mutagenic,
bias RHC, this was carried out considering only the but SAm does not, RHC considers it as mutagenic, but the
compounds included in the test set, and the values wereconfidence is equal to the difference between SAm specificity
calculated in the absence of compounds that contain multipleand Alm sensitivity on the nonconsensus subset.

The confidence level and error associated with individual
toxicophores are summarized in Table 5, wheie the error
associated with individual toxicophores.

In practice, according to the results of SAm and of Alm
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Table 2. Example Substructures of Toxicophores and Associated Table 3. Statistics of the Models on the Subsets of Compounds

Accuracy with Nonconsensus Predictidn
Toxicophore Example substructure Confidence P-value training (796) test (129)
o accuracy sensitivity specificity accuracy sensitivity specificity
specific aromatic nitro aro—N\‘\O 0.81 <<0.05 (%) (%) (%) (%) (%) (%)
anccific aromatic amine — o <008 SAm 50.6 54.5 46.7 57.4 66.2 45.5
e ‘ - Alm 486 45.8 54.6 42.6 34.3 56.6
aromatic nitroso ar"_N\\O 05 0.80
on aIn brackets the number of compounds is reported.
alkyl nitrite \\O 1.00 0.55
nitrosamine "N 090  <<005 Table 4. Prediction Schenfe
eporide \V4 0ss <005 SAm Alm RHC confidence
. \V4 0 0 0 0.85
aziridine : 1.00 0.55 1 l 1 085 (1_ H a)
. N - - 0 1 0 0.11
e Ay 1 0 1 (1-I1e)—0.57
c=n’
diazo W NAWA a0 = nonmutagen; = mutagen.
. N—N
triazene \\N 0.00 1
Table 5. Confidence and Error Associated with Individual
aromatic azo \N=N\ 1.00 0.09 Toxicophores
) * toxicophore confidence error
unsubstituted heteroatom-bonded
Leterostom N Oz oA g0 010 specific aromatic nitro 0.81 0.19
specific aromatic amine 0.79 0.21
aromalic hydroxylamine Nr-oH NA NA nitrosamine 0.90 0.10
aliphatic halide c—clBr,1 0.79 <<0.05 ePOXId_e . 0.85 0.15
o aliphatic halide 0.79 0.21
carboxylic acid halide \ e NA NA polycyclic aromatic system 0.90 0.10
olert other SAs 0.81 0.19
nitrogen or sulphur mustard T _\—S,N NA NA
N N— (iv) otherwise (SAm positive and Alm negative), RHC
polyeyelic aromatie system ﬂ @:} 090  <<005 considers the given compounds as mutagenic, but the product
of confidences of each individual toxicophore present is
N adjusted by the specificity of AIm on the nonconsensus

bay-region in polycyclic aromatic
oS o BEIE" subset
hydrocarbons Q

In other words, in case of nonconsensus prediction, SAm

oo sl ot O O is pref(_ar_red, because rather than being a _merely stgtistical
o ) Q SR modgl itis based on weII—documentgd experlmental_ewdence
’ VARV and its accuracy is generally superior, but the confidence of
sulphonate-bonded carbon (alkyl oo the prediction is accordingly lowered.
alkane sulfonate or dialky! =0 1.00 0.5
o Y CON(‘TLUS.IONS - .
o msuad sty (g 60 The system proposed in this study is an improved fast,
Recarbons ldehyde) _H>=° o8 ow reliable, and easy method for the prediction of the Ames
. test results. Starting from the molecular structures encoded
aliphatic Neritro N NA NA in SMILES notation, the results of each model are combined
° and interpreted. Each single prediction is provided with a
diazonium a S 0.00 ! confidence level that gives its statistical reliability rather than
° quantifying actual errors. The overall error of the proposed
rpropclactone D\o neem system, 15% (sensitivity: 85%, specificity= 85%), is lower
r than any other predictive system (to author’'s knowledge)
runsaturaied aliony grouw _\>_°\. v 0o and is equal to the interlaboratory reproducibility of experi-
a2 mones! e o “w mental test, which can be regarded as the intrinsic error of
N the test. These characteristics make the system suitable for
womatic methylamine " NALNA early determination of levels of genotoxicity concern.
o Moreover, the use of two independent predictive models and
aromatic hydroxylamine ester \0—\\0 NALNA a confidence level allow risk assessors to depict worst and
. best case scenarios, and the user can apply consensus, worst
polyeyclic planar systeen @:“D 07 0ls case, or best case strategies, according to the issue faced.
0 The system is easily scalable allowing the integration with

other predictive models.
@ Toxicophores that can be considered significant are depicted in
bold. If there were no chemicals with the given toxicophore, the ACKNOWLEDGMENT
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