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Introduction

Christoph + Elena + Benoit

The main objectives of this study are

• to investigate the experimental variability of LOAEL data

• develop predictive model for lowest observed effect levels

• compare the performance of model predictions with experimental variability
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Materials and Methods

Datasets

Mazzatorta dataset

Just referred to the paper 2008.

Swiss Federal Office dataset

Elena + Swiss Federal Office contribution (input)

Only rat LOAEL values were used for the current investigation, because they correspond

directly to the Mazzatorta dataset.

Preprocessing

Christoph

Chemical structures in both datasets are represented as SMILES strings (Weininger 1988).

Syntactically incorrect and missing SMILES were generated from other identifiers (e.g names,

CAS numbers) when possible. Studies with undefined (“0”) or empty LOAEL entries were

removed for this study.

Algorithms

Christoph

For this study we are using the modular lazar (lazy structure activity relationships) framework

(Maunz et al. 2013) for model development and validation.
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lazar follows the following basic workflow: For a given chemical structure it searches in a

database for similar structures (neighbors) with experimental data, builds a local (Q)SAR

model with these neighbors and uses this model to predict the unknown activity of the query

compound. This procedure resembles an automated version of read across predictions in

toxicology, in machine learning terms it would be classified as a k-nearest-neighbor algorithm.

Apart from this basic workflow lazar is completely modular and allows the researcher to use

any algorithm for neighbor identification and local (Q)SAR modelling. Within this study we

are using the following algorithms:

Neighbor identification

Christoph

Similarity calculations are based on MolPrint2D fingerprints (Bender et al. 2004) from the

OpenBabel chemoinformatics library (OBoyle et al. 2011).

The MolPrint2D fingerprint uses atom environments as molecular representation, which

resemble basically the chemical concept of functional groups. For each atom in a molecule it

represents the chemical environment with the atom types of connected atoms.

The main advantage of MolPrint2D fingerprints over fingerprints with predefined substructures

(such as OpenBabel FP3, FP4 or MACCs fingerprints) is that it may capture substructures

of toxicological relevance that are not included in predefined substructure lists. Preliminary

experiments have shown that predictions with MolPrint2D fingerprints are indeed more

accurate than fingerprints with predefined substructures.

From MolPrint2D fingerprints we can construct a feature vector with all atom environments

of a compound, which can be used to calculate chemical similarities.

The chemical similarity between two compounds is expressed as the proportion between

atom environments common in both structures and the total number of atom environments
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(Jaccard/Tanimoto index, eq. 1).

sim = |A ∩B|
|A ∪B|

(1)

A atom environments of compound A, B atom environments of compound B.

Local (Q)SAR models

Christoph

As soon as neighbors for a query compound have been identified, we can use their experimental

LOAEL values to predict the activity of the untested compound. In this case we are using

the weighted mean of the neighbors LOAEL values, where the contribution of each neighbor

is weighted by its similarity to the query compound.

Validation

Christoph

Results

Dataset comparison

Christoph + Elena

The main objective of this section is to compare the content of both databases in terms

of structural composition and LOAEL values, to estimate the experimental variability of

LOAEL values and to establish a baseline for evaluating prediction performance.
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Applicability domain

Ches-Mapper analysis

Martin

CheS-Mapper (Chemical Space Mapping and Visualization in 3D, http://ches-mapper.org/,

(Gutlein, Karwath, and Kramer 2012)) can be used to analyze the relationship between the

structure of chemical compounds, their physico-chemical properties, and biological or toxic

effects. CheS-Mapper embeds a dataset into 3D space, such that compounds with similar

feature values are close to each other. The following two screenshots visualise the comparison.

The datasets are embeded into 3D Space based on structural fragments from three Smart list

(OpenBabel FP3, OpenBabel FP4 and OpenBabel MACCS).

Distribution of functional groups

Christoph

fig. 1 shows the frequency of selected functional groups in both datasets. A complete table

for 138 functional groups from OpenBabel FP4 fingerprints can be found in the appendix.

Experimental variability versus prediction uncertainty

Christoph

Duplicated LOAEL values can be found in both datasets and there is a substantial overlap of

compounds, with LOAEL values in both datasets.

Intra dataset variability

The Mazzatorta dataset has 562 LOAEL values with 439 unique structures, the Swiss Federal

Office dataset has 493 rat LOAEL values with 381 unique structures. fig. 2 shows the

5



Alcohol
Aldehyde

Alkene
Alkyne
Amide

Amidine
Amine

Annelated_rings
Aromatic

Arylchloride
Arylfluoride

Carbonic_acid_derivatives
Carboxylic_acid

Carboxylic_acid_derivative
Conjugated_double_bond

C_ONS_bond
Dialkylether

Enol
Epoxide

Heteroaromatic
Heterocyclic

Ketone
Lactam

Lactone
Nitrile
Nitro

Phenol
Phosphoric_acid_derivative

Salt
Sulfenic_derivative
Sulfonic_derivative

Trifluoromethyl
Vinylogous_carbonyl_or_carboxyl_derivative

Vinylogous_ester

0 100 200 300 400 500

V3

 Mazzatorta

 Swiss Federal Office

Figure 1: Frequency of functional groups.
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intra-dataset variability, where each vertical line represents a single compound and each

dot represents an individual LOAEL value. The experimental variance of LOAEL values is

similar in both datasets (p-value: 0.48).

Figure 2: Intra dataset variability: Each vertical line represents a compound, dots are
individual LOAEL values.

Inter dataset variability

fig. 3 shows the same situation for the combination of the Mazzatorta and Swiss Federal

Office datasets. Obviously the experimental variability is larger than for individual datasets.

LOAEL correlation between datasets

fig. ?? depicts the correlation between LOAEL data from both datasets (using means for

multiple measurements). Identical values were removed from analysis.
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Figure 3: Inter dataset variability

8



## Loading required package: methods

Figure 4: Correlation of dataset medians (-log10(LOAEL [mmol/kg_bw])

Correlation analysis shows a significant correlation (p-value < 2.2e-16) with rˆ2: 0.55, RMSE:

1.34
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Local (Q)SAR models

Christoph

In order to compare the perfomance of in silico models with experimental variability we are

using compounds that occur in both datasets as a test set (155 compounds, 434 measurements).

The Mazzatorta, the Swiss Federal Office dataset and a combined dataset were used as training

data. Predictions for the test set compounds were made after eliminating all information

from the test compound from the corresponding training dataset. tbl. 1 summarizes the

results:

Table 1: Comparison of model predictions with experimental variability.

Training data Model prediction Experimental variability

Mazzatorta 0.88 0.87

Swiss Federal Office 0.65 0.76

Commmon 1.28 0.8314774

Combined 0.8242536

Traditional 10-fold cross-validation results are summarised in tbl. 2:

Table 2: 10-fold crossvalidation results

Training dataset r2 RMSE MAE

Mazzatorta 0.37 0.84 0.65

Swiss Federal Office 0.25 0.75 0.61

Combined 0.12 1.45 1.21

//: # “‘{r fig.cap=“Comparison of predictions with measured values (-log10(LOAEL

[mmol/kg_bw])”, fig.lp=“fig:”, echo=F}

10



Figure 5: Comparison of predictions with measured values (-log10(LOAEL [mmol/kg_bw])
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Discussion

Elena + Benoit

Summary
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