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Random forest, support vector machine, logistic regression, neural net-14

works and k-nearest neighbor (lazar) algorithms, were applied to a new15

Salmonella mutagenicity dataset with 8290 unique chemical structures utiliz-16

ing MolPrint2D and Chemistry Development Kit (CDK) descriptors. Cross-17

validation accuracies of all investigated models ranged from 80-85% which18

is comparable with the interlaboratory variability of the Salmonella muta-19

genicity assay. Pyrrolizidine alkaloid predictions showed a clear distinction20

between chemical groups, where otonecines had the highest proportion of21

positive mutagenicity predictions and monoesters the lowest.22
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Introduction23

The assessment of mutagenicity is an important part in the safety assessment of chem-24

ical structures, because mutations may lead to cancer and germ cells damage. The25

Salmonella typhimurium bacterial reverse mutation test (Ames test) is capable to iden-26

tify substances that cause mutations (e.g., base-pair substitutions, frameshifts, insertions,27

deletions) and is generally used as the first step in genotoxicity and carcinogenicity as-28

sessments.29

Computer based (in silico) mutagenicity predictions can be used in the early screening of30

novel compounds (e.g. drug candidates), but they are also gaining regulatory acceptance31

e.g. for the registration of industrial chemicals within REACH ((ECHA) (2017)) or32

the assessment of impurities in pharmaceuticals (ICH M7 guideline, Harmonisation of33

Technical Requirements for Pharmaceuticals for Human Use International Council for34

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH)35

(2017)).36

Currently, Salmonella mutagenicity is the toxicological endpoint with the largest amount37

of public data for almost 10000 structures, whereas datasets for other endpoints contain38

typically only a few hundred compounds. The Ames test itself is relatively reproducible39

with an interlaboratory variability of 80-85% (Piegorsch and Zeiger (1991)).40

This makes the development of mutagenicity models also interesting from a computa-41

tional chemistry and machine learning point of view. The relatively large amount of42

public data reduces the probability of chance effects due to small sample sizes and the43

reliability of the underlying assay reduces the risk of overfitting experimental errors.44

Within this study we attempted45

• to generate a new public mutagenicity training dataset, by combining the most46

comprehensive public datasets47
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• to compare the performance of MolPrint2D (MP2D) fingerprints with Chemistry48

Development Kit (CDK) descriptors for mutagenicity predictions49

• to compare the performance of global QSAR models (random forests (RF), support50

vector machines (SVM), logistic regression (LR), neural nets (NN)) with local51

models (lazar)52

To demonstrate the application of mutagenicity models to compounds with very limited53

experimental data and to show their strengths an weaknesses we decided to apply them54

to Pyrrolizidine alkaloids (PAs).55

Pyrrolizidine alkaloids (PAs) are characteristic metabolites of some plant families,56

mainly: Asteraceae, Boraginaceae, Fabaceae and Orchidaceae (Hartmann and Witte57

(1995), Langel, Ober, and Pelser (2011)) and form a powerful defence mechanism58

against herbivores. PAs are heterocyclic ester alkaloids composed of a necine base (two59

fused five-membered rings joined by a single nitrogen atom) and a necic acid (one or60

two carboxylic ester arms), occurring principally in two forms, tertiary base PAs and61

PA N-oxides.62

In mammals, PAs are mainly metabolized in the liver. There are three principal63

metabolic pathways for 1,2-unsaturated PAs (Chen, Mei, and Fu (2010)):64

• Detoxification by hydrolysis of the ester bond on positions C7 and C9 by non-65

specific esterases to release necine base and necic acid.66

• N-oxidation of the necine base to form a PA N-oxides, which can be either con-67

jugated by phase II enzymes and then excreted or converted back into the cor-68

responding parent PA (Wang et al. (2005)). This detoxification pathway is not69

possible for otonecine-type PAs, as they are N-methylated (see Figure 1).70

• Metabolic activation or toxification by oxidation (for retronecine-type PAs) or71

oxidative N-demethylation (for otonecine-type Pas) by cytochromes P450 isoforms72
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CYP2B and 3A (Lin, Cui, and Hawes (1998), Ruan et al. (2014)).73

The latter reactions result in the formation of dehydropyrrolizidine (DHP) that is highly74

reactive and causes damage by building adducts with protein, lipids and DNA (Chen,75

Mei, and Fu (2010)). On the other hand, open diesters and macrocyclic PAs have a76

reduced detoxification due to steric hinderance of the respective esterases (Ruan et al.77

(2014))78

Therefore the mutagenic probability of PAs is highly dependent on structure of necine79

base and necic acid (Hadi et al. (2021); Allemang et al. (2018), Louisse et al. (2019)).80

However, due to limited availability of pure substances, only a limited number of PAs81

have been investigated with regards to their structure-specific mutagenicity and exper-82

imentally in an Ames test. To overcome this bottleneck, the prediction of structure-83

specific mutagenic probabilities of PAs with different machine learning models could84

provide further insights in the mechanisms.85

Materials and Methods86

Data87

Mutagenicity training data88

An identical training dataset was used for all models. The training dataset was compiled89

from the following sources:90

• Kazius/Bursi Dataset (4337 compounds, Kazius, McGuire, and Bursi (2005)):91

http://cheminformatics.org/datasets/bursi/cas_4337.zip92

• Hansen Dataset (6513 compounds, Hansen et al. (2009)): http://doc.ml.tu-berlin.93

de/toxbenchmark/Mutagenicity_N6512.csv94

• EFSA Dataset (695 compounds EFSA (2016)): https://data.europa.eu/euodp/95
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data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls96

Mutagenicity classifications from Kazius and Hansen datasets were used without further97

processing. According to these publications compounds were classified as mutagenic, if98

at least one positive result has been obtained in Salmonella typhimurium strains TA98,99

TA100, TA1535, TA1537, TA97, TA102 and 1538 either with or without metabolic100

activation by S9. E. coli results were not considered in these databases. To achieve101

consistency with these datasets, EFSA compounds were classified as mutagenic, if at102

least one positive result was found for TA98 or T100 Salmonella strains either with or103

without metabolic activation. The complete dataset contains chemicals for very diverse104

application areas (e.g. pharmaceuticals, pesticides, industrial chemicals, environmental105

contaminants).106

Dataset merges were based on unique SMILES (Simplified Molecular Input Line En-107

try Specification, Weininger, Weininger, and Weininger (1989)) strings of the compound108

structures. Duplicated experimental data with the same outcome was merged into a109

single value, because it is likely that it originated from the same experiment. Contradic-110

tory results were kept as multiple measurements in the database. The combined training111

dataset contains 8290 unique structures and 8309 individual measurements.112

Source code for all data download, extraction and merge operations is pub-113

licly available from the git repository https://git.in-silico.ch/mutagenicity-paper114

under a GPL3 License. The new combined dataset can be found at https:115

//git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/mutagenicity.csv.116

Pyrrolizidine alkaloid (PA) dataset117

The pyrrolizidine alkaloid dataset was created from five independent, necine base sub-118

structure searches in PubChem (https://pubchem.ncbi.nlm.nih.gov/) and compared to119

the PAs listed in the EFSA publication EFSA (2011) and the book by Mattocks (1986),120
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Figure 1: Structural features of pyrrolizidine alkaloids

to ensure, that all major PAs were included. PAs mentioned in these publications, which121

were not found in the downloaded substances were searched individually in PubChem122

and, if available, downloaded separately. Non-PA substances, duplicates, and isomers123

were removed from the files, but artificial PAs, even if unlikely to occur in nature, were124

kept. The resulting PA dataset comprised a total of 602 different PAs. Further details125

about the compilation of the PA dataset are described in Schöning et al. (2017).126

The PAs in the dataset were classified according to structural features. A total of 9127

different structural features were assigned to the necine base, modifications of the necine128

base and to the necic acid (Figure 1):129

For the necine base, the following structural features were chosen:130

• Retronecine-type (1,2-unstaturated necine base, 392 compounds)131

• Otonecine-type (1,2-unstaturated necine base, 46 compounds)132

• Platynecine-type (1,2-saturated necine base, 140 compounds)133
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For the modifications of the necine base, the following structural features were chosen:134

• N-oxide-type (84 compounds)135

• Dehydropyrrolizidine-type (DHP, pyrrolic ester, 23 compounds)136

• Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type, 495 com-137

pounds)138

For the necic acid, the following structural features were chosen:139

• Monoester-type (154 compounds)140

• Open-ring diester-type (163 compounds)141

• Macrocyclic diester-type (255 compounds)142

Descriptors143

MolPrint2D (MP2D) fingerprints144

MolPrint2D fingerprints (O’Boyle et al. (2011)) use atom environments as molecular145

representation. They determine for each atom in a molecule, the atom types of its146

connected atoms to represent their chemical environment. This resembles basically the147

chemical concept of functional groups.148

In contrast to predefined lists of fragments (e.g. FP3, FP4 or MACCs fingerprints) or149

descriptors (e.g CDK) they are generated dynamically from chemical structures. This150

has the advantage that they can capture unknown substructures of toxicological relevance151

that are not included in other descriptors. In addition, they allow the efficient calculation152

of chemical similarities (e.g. Tanimoto indices) with simple set operations.153

MolPrint2D fingerprints were calculated with the OpenBabel cheminformatics library154

(O’Boyle et al. (2011)) for the complete training dataset with 8309 instances. They can155

be obtained from the following locations:156

Training data:157
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• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/158

mutagenicity-mp2d)159

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/160

mutagenicity-mp2d.csv.gz)161

Pyrrolizidine alkaloids:162

• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/163

pa-mp2d)164

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/165

pa-mp2d.csv)166

Chemistry Development Kit (CDK) descriptors167

Molecular 1D and 2D descriptors were calculated with the PaDEL-Descriptors program168

(http://www.yapcwsoft.com version 2.21, Yap (2011)). PaDEL uses the Chemistry De-169

velopment Kit (CDK, https://cdk.github.io/index.html) library for descriptor calcula-170

tions.171

As the training dataset contained 8309 instances, it was decided to delete all instances172

where CDK descriptor calculations failed during pre-processing. Furthermore, all sub-173

stances with contradictory experimental mutagenicity data were removed. The final174

training dataset contained 1442 descriptors for 8083 compounds.175

CDK training data can be obtained from https://git.in-silico.ch/mutagenicity-paper/176

tree/mutagenicity/mutagenicity-cdk.csv.177

The same procedure was applied for the pyrrolizidine dataset yielding descriptors for178

compounds. CDK features for pyrrolizidine alkaloids are available at https://git.in-silico.179

ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/pa-cdk.csv.180
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Algorithms181

lazar182

lazar (lazy structure activity relationships) is a modular framework for read-across model183

development and validation. It follows the following basic workflow: For a given chemical184

structure lazar:185

• searches in a database for similar structures (neighbours) with experimental data,186

• builds a local QSAR model with these neighbours and187

• uses this model to predict the unknown activity of the query compound.188

This procedure resembles an automated version of read across predictions in toxicology,189

in machine learning terms it would be classified as a k-nearest-neighbour algorithm.190

Apart from this basic workflow, lazar is completely modular and allows the researcher to191

use arbitrary algorithms for similarity searches and local QSAR (Quantitative structure–192

activity relationship) modelling. Algorithms used within this study are described in the193

following sections.194

Feature preprocessing195

MolPrint2D features were used without preprocessing. Near zero variance and strongly196

correlated CDK descriptors were removed and the remaining descriptor values were197

centered and scaled. Preprocessing was performed with the R caret preProcess function198

using the methods “nzv”,“corr”,“center” and “scale” with default settings.199

Neighbour identification200

Utilizing this modularity, similarity calculations were based both on MolPrint2D finger-201

prints and on CDK descriptors.202
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For MolPrint2D fingerprints chemical similarity between two compounds a and b is203

expressed as the proportion between atom environments common in both structures204

A ∩ B and the total number of atom environments A ∪ B (Jaccard/Tanimoto index).205

sim = |A ∩ B|
|A ∪ B|

For CDK descriptors chemical similarity between two compounds a and b is expressed206

as the cosine similarity between the descriptor vectors A for a and B for b.207

sim = A · B

|A||B|

Threshold selection is a trade-off between prediction accuracy (high threshold) and the208

number of predictable compounds (low threshold). As it is in many practical cases209

desirable to make predictions even in the absence of closely related neighbours, we follow210

a tiered approach:211

• First a similarity threshold of 0.5 (MP2D/Tanimoto) or 0.9 (CDK/Cosine) is used212

to collect neighbours, to create a local QSAR model and to make a prediction for213

the query compound. This are predictions with high confidence.214

• If any of these steps fails, the procedure is repeated with a similarity threshold of215

0.2 (MP2D/Tanimoto) or 0.7 (CDK/Cosine) and the prediction is flagged with a216

warning that it might be out of the applicability domain of the training data (low217

confidence).218

• These similarity thresholds are the default values chosen by software developers219

and remained unchanged during the course of these experiments.220

Compounds with the same structure as the query structure are automatically eliminated221

from neighbours to obtain unbiased predictions in the presence of duplicates.222
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Local QSAR models and predictions223

Only similar compounds (neighbours) above the threshold are used for local QSAR224

models. In this investigation, we are using a weighted majority vote from the neigh-225

bour’s experimental data for mutagenicity classifications. Probabilities for both classes226

(mutagenic/non-mutagenic) are calculated according to the following formula and the227

class with the higher probability is used as prediction outcome.228

pc =
∑ simn,c∑ simn

pc Probability of class c (e.g. mutagenic or non-mutagenic)229 ∑ simn,c Sum of similarities of neighbours with class c230 ∑ simn Sum of all neighbours231

Applicability domain232

The applicability domain (AD) of lazar models is determined by the structural diver-233

sity of the training data. If no similar compounds are found in the training data no234

predictions will be generated. Warnings are issued if the similarity threshold had to be235

lowered from 0.5 to 0.2 in order to enable predictions. Predictions without warnings236

can be considered as close to the applicability domain (high confidence) and predictions237

with warnings as more distant from the applicability domain (low confidence). Quantita-238

tive applicability domain information can be obtained from the similarities of individual239

neighbours.240

Validation241

10-fold cross validation was performed for model evaluation.242
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Pyrrolizidine alkaloid predictions243

For the prediction of pyrrolizidine alkaloids models were generated with the MP2D and244

CDK training datasets. The complete feature set was used for MP2D predictions, for245

CDK predictions the intersection between training and pyrrolizidine alkaloid features246

was used.247

Availability248

• Source code for this manuscript (GPL3): https://git.in-silico.ch/lazar/tree/?h=249

mutagenicity-paper250

• Crossvalidation experiments (GPL3): https://git.in-silico.ch/lazar/tree/models/251

?h=mutagenicity-paper252

• Pyrrolizidine alkaloid predictions (GPL3): https://git.in-silico.ch/lazar/tree/253

predictions/?h=mutagenicity-paper254

• Public web interface: https://lazar.in-silico.ch255

Tensorflow models256

Feature Preprocessing257

For preprocessing of the CDK features we used a quantile transformation to a uniform258

distribution. MP2D features were not preprocessed.259

Random forests (RF)260

For the random forest classifier we used the parameters n_estimators=1000 and261

max_leaf_nodes=200. For the other parameters we used the scikit-learn default values.262
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Logistic regression (SGD) (LR-sgd)263

For the logistic regression we used an ensemble of five trained models. For each model264

we used a batch size of 64 and trained for 50 epochs. As an optimizer ADAM was chosen.265

For the other parameters we used the tensorflow default values.266

Logistic regression (scikit) (LR-scikit)267

For the logistic regression we used as parameters the scikit-learn default values.268

Neural Nets (NN)269

For the neural network we used an ensemble of five trained models. For each model we270

used a batch size of 64 and trained for 50 epochs. As an optimizer ADAM was chosen.271

The neural network had 4 hidden layers with 64 nodes each and a ReLu activation272

function. For the other parameters we used the tensorflow default values.273

Support vector machines (SVM)274

We used the SVM implemented in scikit-learn. We used the parameters kernel=‘rbf’,275

gamma=‘scale’. For the other parameters we used the scikit-learn default values.276

Validation277

10-fold cross-validation was used for all Tensorflow models.278

Pyrrolizidine alkaloid predictions279

For the prediction of pyrrolizidine alkaloids we trained the model described above on280

the training data. For training and prediction only the features were used that were in281

the intersection of features from the training data and the pyrrolizidine alkaloids.282
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Availability283

Jupyter notebooks for these experiments can be found at the following locations284

Crossvalidation:285

• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/286

crossvalidations/tensorflow/prediction-v5-norm.ipynb287

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/288

tensorflow/prediction-v5-ext.ipynb289

Pyrrolizidine alkaloids:290

• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/291

pyrrolizidine-alkaloids/tensorflow/prediction-v5-ext-ext-Padel-2D.ipynb292

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/293

tensorflow/prediction-v5-ext-Padel-2D.ipynb294

Results295

10-fold crossvalidations296

Crossvalidation results are summarized in the following tables: Table 1 shows results297

with MolPrint2D descriptors and Table 2 with CDK descriptors.298

Table 1: Summary of crossvalidation results with MolPrint2D descriptors (lazar-HC:
lazar with high confidence, lazar-all: all lazar predictions, RF: random forests,
LR-sgd: logistic regression (stochastic gradient descent), LR-scikit: logistic re-
gression (scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 84 82 80 84 84 84 84

True positive rate 89 85 78 83 83 82 83
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lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

True negative rate 78 78 82 84 85 85 86

Positive predictive value 83 80 81 84 84 84 85

Negative predictive value 86 84 80 84 84 83 84

Nr. predictions 5864 7782 8303 8303 8303 8303 8303

Table 2: Summary of crossvalidation results with CDK descriptors (lazar-HC: lazar with
high confidence, lazar-all: all lazar predictions, RF: random forests, LR-sgd:
logistic regression (stochastic gradient descent), LR-scikit: logistic regression
(scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 85 82 84 79 80 85 82

True positive rate 87 84 81 81 80 85 82

True negative rate 82 80 86 78 80 85 82

Positive predictive value 85 81 85 79 80 85 82

Negative predictive value 85 82 82 80 80 85 82

Nr. predictions 4872 7353 8077 8077 8077 8077 8077

Figure 2 depicts the position of all crossvalidation results in receiver operating charac-299

teristic (ROC) space.300

Confusion matrices for all models are available from the git repository https://git.in-301

silico.ch/mutagenicity-paper/tree/crossvalidations/confusion-matrices/, individual pre-302

dictions can be found in https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/predictions/.303

All investigated algorithm/descriptor combinations give accuracies between (80 and 85%)304

which is equivalent to the experimental variability of the Salmonella typhimurium mu-305

tagenicity bioassay (80-85%, Piegorsch and Zeiger (1991)). Sensitivities and specificities306
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Figure 2: ROC plot of crossvalidation results (lazar-HC: lazar with high confidence,
lazar-all: all lazar predictions, RF: random forests, LR-sgd: logistic regres-
sion (stochastic gradient descent), LR-scikit: logistic regression (scikit), NN:
neural networks, SVM: support vector machines).
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are balanced in all of these models.307

Pyrrolizidine alkaloid mutagenicity predictions308

Mutagenicity predictions of 602 pyrrolizidine alkaloids (PAs) from all investigated309

models can be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/310

pyrrolizidine-alkaloids/pa-predictions.csv. A visual representation of all PA predictions311

can be found at https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/312

pa-predictions.pdf.313

For the visualisation of the position of pyrrolizidine alkaloids in respect to the train-314

ing data set we have applied t-distributed stochastic neighbor embedding (t-SNE,315

Maaten and Hinton (2008)) for MolPrint2D and CDK descriptors. t-SNE maps316

each high-dimensional object (chemical) to a two-dimensional point, maintaining the317

high-dimensional distances of the objects. Similar objects are represented by nearby318

points and dissimilar objects are represented by distant points. t-SNE coordinates were319

calculated with the R Rtsne package using the default settings (perplexity = 30, theta320

= 0.5, max_iter = 1000).321

Figure 3 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity train-322

ing data in MP2D space (Tanimoto/Jaccard similarity), which resembles basically the323

structural diversity of the investigated compounds.324

Figure 4 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity train-325

ing data in CDK space (Euclidean similarity), which resembles basically the physical-326

chemical properties of the investigated compounds.327

Figure 5 and Figure 6 depict two example pyrrolizidine alkaloid mutagenicity predictions328

in the context of training data. t-SNE visualisations of all investigated models can be329

downloaded from https://git.in-silico.ch/mutagenicity-paper/figures.330
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Figure 3: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA) in MP2D space

18



Figure 4: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA) in CDK space
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Figure 5: t-SNE visualisation of MP2D random forest predictions
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Figure 6: t-SNE visualisation of all CDK lazar predictions
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Table 3 summarises the outcome of pyrrolizidine alkaloid predictions from all models331

with MolPrint2D and CDK descriptors.332

Table 3: Summary of pyrrolizidine alkaloid predictions

Model MP2D Mutagenic Nr. predictions CDK Mutagenic Nr. predictions

lazar-all 20% (111) 93% (560) 39% (193) 83% (500)

lazar-HC 25% (76) 50% (301) 45% (111) 41% (246)

RF 5% (28) 100% (602) 2% (10) 100% (602)

LR-sgd 21% (127) 100% (602) 16% (97) 100% (602)

LR-scikit 20% (118) 100% (602) 15% (88) 100% (602)

NN 21% (124) 100% (602) 25% (150) 100% (602)

SVM 14% (82) 100% (602) 3% (19) 100% (602)

Figure 7 displays the proportion of positive mutagenicity predictions from all models333

for the different pyrrolizidine alkaloid groups. Tensorflow models predicted all 602334

pyrrolizidine alkaloids, lazar MP2D models predicted 560 compounds (301 with high335

confidence) and lazar CDK models 500 compounds (246 with high confidence).336

For the lazar-HC model, only 50/41% of the PA dataset were within the stricter similarity337

thresholds of 0.5/0.9 (MP2D/CDK). Reduction of the similarity threshold to 0.2/0.5 in338

the lazar-all model increased the amount of predictable PAs to 93/83%. As the other339

ML models do not consider applicability domains, all PAs were predicted.340

Although most of the models show similar accuracies, sensitivities and specificities in341

crossvalidation experiments some of the models (MPD-RF, CDK-RF and CDK-SVM)342

predict a lower number of mutagens (2-5%) than the majority of the models (14-25%,343

Table 3, Figure 7).344

Over all models, the mean value of mutagenic predicted PAs was highest for otonecines345
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Figure 7: Summary of pyrrolizidine alkaloid predictions
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(65%, 407/623), followed by macrocyclic diesters (31%, 1042/3356), dehydropy-346

rrolizidines (27%, 74/268), tertiary PAs (19%, 1201/6307) and retronecines (15%,347

762/5054).348

When excluding the aforementioned three deviating models, the rank order stays the349

same, but the percentage of mutagenic PAs is higher.350

The following rank order for mutagenic probability can be deduced from the results of351

all models taken together:352

Necine base: Platynecine < Retronecine « Otonecine353

Necic acid: Monoester < Diester « Macrocyclic diester354

Modification of necine base: N-oxide < Tertiary PA < Dehydropyrrolizidine355

Discussion356

Data357

A new training dataset for Salmonella mutagenicity was created from three different358

sources (Kazius, McGuire, and Bursi (2005), Hansen et al. (2009), EFSA (2016)). It359

contains 8290 unique chemical structures, which is according to our knowledge the360

largest public mutagenicity dataset presently available. The new training data can361

be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/362

mutagenicity.csv.363

Algorithms364

lazar is formally a k-nearest-neighbor algorithm that searches for similar structures365

for a given compound and calculates the prediction based on the experimental data for366

these structures. The QSAR literature calls such models frequently local models, because367
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models are generated specifically for each query compound. The investigated tensorflow368

models are in contrast global models, i.e. a single model is used to make predictions for369

all compounds. It has been postulated in the past, that local models are more accurate,370

because they can account better for mechanisms that affect only a subset of the training371

data.372

Table 1, Table 2 and Figure 2 show that the crossvalidation accuracies of all models are373

comparable to the experimental variability of the Salmonella typhimurium mutagenicity374

bioassay (80-85% according to Piegorsch and Zeiger (1991)). All of these models have375

balanced sensitivity (true positive rate) and specificity (true negative rate) and provide376

highly significant concordance with experimental data (as determined by McNemar’s377

Test). This is a clear indication that in silico predictions can be as reliable as the378

bioassays. Given that the variability of experimental data is similar to model variability379

it is impossible to decide which model gives the most accurate predictions, as models380

with higher accuracies might just approximate experimental errors better than more381

robust models.382

Our results do not support the assumption that local models are superior to global383

models for classification purposes. For regression models (lowest observed effect level)384

we have found however that local models may outperform global models (Helma et al.385

(2018)) with accuracies similar to experimental variability.386

As all investigated algorithms give similar accuracies the selection will depend more on387

practical considerations than on intrinsic properties. Nearest neighbor algorithms like388

lazar have the practical advantage that the rationales for individual predictions can389

be presented in a straightforward manner that is understandable without a background390

in statistics or machine learning (a screenshot of the mutagenicity prediction for 12,21-391

Dihydroxy-4-methyl-4,8-secosenecinonan-8,11,16-trione is depicted in Figure 8). This392

allows a critical examination of individual predictions and prevents blind trust in models393
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that are intransparent to users with a toxicological background.394

Descriptors395

This study uses two types of descriptors for the characterisation of chemical structures:396

MolPrint2D fingerprints (MP2D, Bender et al. (2004)) use atom environments (i.e.397

connected atom types for all atoms in a molecule) as molecular representation, which398

resembles basically the chemical concept of functional groups. MP2D descriptors are399

used to determine chemical similarities in the default lazar settings, and previous ex-400

periments have shown, that they give more accurate results than predefined fingerprints401

(e.g. MACCS, FP2-4).402

Chemistry Development Kit (CDK, Willighagen, Mayfield, and Alvarsson (2017)) descrip-403

tors were calculated with the PaDEL graphical interface (Yap (2011)). They include 1D404

and 2D topological descriptors as well as physical-chemical properties.405

All investigated algorithms obtained models within the experimental variability for both406

types of descriptors (Table 1, Table 2, Figure 2).407

Given that similar predictive accuracies are obtainable from both types of descriptors408

the choice depends once more on practical considerations:409

MolPrint2D fragments can be calculated very efficiently for every well defined chem-410

ical structure with OpenBabel (O’Boyle et al. (2011)). CDK descriptor calculations411

are in contrast much more resource intensive and may fail for a significant number of412

compounds ( from 8290).413

MolPrint2D fragments are generated dynamically from chemical structures and can be414

used to determine if a compound contains structural features that are absent in training415

data. This feature can be used to determine applicability domains. CDK descriptors416

contain in contrast a predefined set of descriptors with unknown toxicological relevance.417
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Figure 8: lazar screenshot of 12,21-Dihydroxy-4-methyl-4,8-secosenecinonan-8,11,16-
trione mutagenicity prediction
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MolPrint2D fingerprints can be represented very efficiently as sets of features that are418

present in a given compound which makes similarity calculations very efficient. Due to419

the large number of substructures present in training compounds, they lead however to420

large and sparsely populated datasets, if they have to be expanded to a binary matrix421

(e.g. as input for tensorflow models). CDK descriptors contain in contrast in every case422

matrices with 1442 columns which can cause substantial computational overhead.423

Pyrrolizidine alkaloid mutagenicity predictions424

Algorithms and descriptors425

Figure 7 shows a clear differentiation between the different pyrrolizidine alkaloid groups.426

Nevertheless differences between predictions from different algorithms and descriptors427

(Table 3) were not expected based on crossvalidation results.428

In order to investigate, if any of the investigated models show systematic errors in the429

vicinity of pyrrolizidine-alkaloids we have performed a detailled t-SNE analysis of all430

models (see Figure 5 and Figure 6 for two examples, all visualisations can be found at431

https://git.in-silico.ch/mutagenicity-paper/tree/figures).432

None of the models showed obvious deviations from their expected behaviour, so the433

reason for the disagreement between some of the models remains unclear at the moment.434

It is however possible that some systematic errors are covered up by converting high435

dimensional spaces to two coordinates and are thus invisible in t-SNE visualisations.436

Only two compounds from the PA dataset (Senecivernine and Retronecine) are part of437

the training set. Both are non-mutagenic and were predicted as non-mutagenic by all438

models (instances have been removed from the training set for unbiased predictions).439

Despite the exact concordance, we cannot draw any general conclusions about model440

performance based on two examples with a single outcome.441
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Necic acid442

The rank order of the necic acid is comparable in all models. PAs from the monoester443

type had the lowest genotoxic probability, followed by PAs from the open-ring diester444

type. PAs with macrocyclic diesters had the highest genotoxic probability. The result445

fits well with current state of knowledge: in general, PAs, which have a macrocyclic446

diesters as necic acid, are considered to be more mutagenic than those with an open-ring447

diester or monoester (EFSA (2011), Fu et al. (2004)). As pointed out above, open448

diesters and macrocyclic PAs have a reduced detoxification due to steric hinderance of449

the respective esterases (Ruan et al. (2014)). This was also confirmed by more recent450

studies, confirming that macrocyclic- and open-diesters are more genotoxic in vitro than451

monoesters (Hadi et al. (2021); Allemang et al. (2018), Louisse et al. (2019)).452

Necine base453

In the rank order of necine base PAs, platynecine is the least mutagenic, followed by454

retronecine, and otonecine. Saturated PAs of the platynecine-type are generally accepted455

to be less or non-mutagenic and have been shown in in vitro experiments to form no456

DNA-adducts (Xia et al. (2013)). In literature, otonecine-type PAs were shown to be457

more mutagenic than those of the retronecine-type (Li et al. (2013)).458

Modifications of necine base459

The group-specific results reflect the expected relationship between the groups: the460

low mutagenic probability of N -oxides and the high probability of dehydropyrrolizidines461

(DHP) (Chen, Mei, and Fu (2010)). However, N -oxides may be in vivo converted back462

to their parent mutagenic/tumorigenic parent PA (Yan et al. (2008)), on the other463

hand they are highly water soluble and generally considered as detoxification products,464

which are in vivo quickly renally eliminated (Chen, Mei, and Fu (2010)).465
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DHP are regarded as the toxic principle in the metabolism of PAs, and are known to466

produce protein- and DNA-adducts (Chen, Mei, and Fu (2010)). None of our investigated467

models did meet this expectation and all of them predicted the majority of DHP as non-468

mutagenic. However, the following issues need to be considered. On the one hand, all469

DHP were outside of the stricter applicability domain of MP2D lazar. This indicates470

that they are structurally very different than the training data and might be out of the471

applicability domain of all models based on this training set. In addition, DHP has two472

unsaturated double bounds in its necine base, making it highly reactive. DHP and other473

comparable molecules have a very short lifespan in vivo, and usually cannot be used in474

in vitro experiments.475

Overall the low number of positive mutagenicity predictions was unexpected. PAs are476

generally considered to be genotoxic, and the mode of action is also known. Therefore,477

the fact that some models predict the majority of PAs as not mutagenic seems contradic-478

tory. To understand this result, the experimental basis of the training dataset has to be479

considered. The training dataset is based on the Salmonella typhimurium mutagenicity480

bioassay (Ames test). There are some studies, which show mutagenicity of PAs in the481

Ames test (Chen, Mei, and Fu (2010)). Also, Rubiolo et al. (1992) examined several482

different PAs and several different extracts of PA-containing plants in the Ames test.483

They found that the Ames test was indeed able to detect mutagenicity of PAs, but in484

general, appeared to have a low sensitivity. The pre-incubation phase for metabolic485

activation of PAs by microsomal enzymes was the sensitivity-limiting step. This could486

very well mean that the low sensitivity of the Ames test for PAs is also reflected in the487

investigated models.488

In summary, we found marked differences in the predicted genotoxic probability between489

the PA groups: most mutagenic appeared the otonecines and macrocyclic diesters, least490

mutagenic the platynecines and the mono- and diesters. These results are comparable491
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with in vitro measurements in hepatic HepaRG cells (Louisse et al. (2019)), where492

relative potencies (RP) were determined: for otonecines and cyclic diesters RP = 1, for493

open diesters RP = 0.1 and for monoesters RP = 0.01.494

Due to a lack of differential data, European authorities based their risk assessment in495

a worst-case approach on lasiocarpine, for which sufficient data on genotoxicity and496

carcinogenicity were available (HMPC (2014), EMA (2020)). Our data further support497

a tiered risk assessment based on in silico and experimental data on the relative potency498

of individual PAs as already suggested by other authors (Merz and Schrenk (2016), Rutz499

et al. (2020), Louisse et al. (2019)).500

The practical question how to choose model predictions in the absence of experimental501

data remains open. Tensorflow predictions do not include applicability domain estima-502

tions and the rationales for predictions cannot be traced by toxicologists. Transparent503

models like lazar may have an advantage in this context, because they present ratio-504

nales for predictions (similar compounds with experimental data) which can be accepted505

or rejected by toxicologists and provide validated applicability domain estimations.506

Conclusions507

A new public Salmonella mutagenicity training dataset with 8309 experimental results508

was created and used to train lazar and Tensorflow models with MolPrint2D and CDK509

descriptors. All investigated algorithm and descriptor combinations showed accuracies510

comparable to the interlaboratory variability of the Ames test.511

Pyrrolizidine alkaloid predictions showed a clear separation between different classes of512

PAs which were generally in accordance with the current toxicological knowledge about513

these compounds. Some of the models showed however a substantially lower number of514

mutagenicity predictions, despite similar crossvalidation results and we were unable to515
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identify the reasons for this discrepancy within this investigation.516

Our data show that large difference exist with regard to genotoxic probabilities between517

different pyrrolizidine subgroups. To adjust risk assessment of pyrrolizidine contamina-518

tion, our data supports a tiered risk assessment based on in silico and experimental data519

on the relative potency of individual pyrrolizidine alkaloids.520
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