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Random forest, support vector machine, logistic regression, neural12

networks and k-nearest neighbor (lazar) algorithms, were applied to new13

Salmonella mutagenicity dataset with 8309 unique chemical structures. The14

best prediction accuracies in 10-fold-crossvalidation were obtained with15

lazar models and MolPrint2D descriptors, that gave accuracies (84%)16

similar to the interlaboratory variability of the Ames test.17

TODO: PA results18

Introduction19

TODO: rationale for investigation20
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The main objectives of this study were21

• to generate a new mutagenicity training dataset, by combining the most compre-22

hensive public datasets23

• to compare the performance of MolPrint2D (MP2D) fingerprints with PaDEL de-24

scriptors25

• to compare the performance of global QSAR models (random forests (RF), support26

vector machines (SVM), logistic regression (LR), neural nets (NN)) with local27

models (lazar)28

• to apply these models for the prediction of pyrrolizidine alkaloid mutagenicity29

Materials and Methods30

Data31

Mutagenicity training data32

An identical training dataset was used for all models. The training dataset was compiled33

from the following sources:34

• Kazius/Bursi Dataset (4337 compounds, Kazius, McGuire, and Bursi (2005)):35

http://cheminformatics.org/datasets/bursi/cas_4337.zip36

• Hansen Dataset (6513 compounds, Hansen et al. (2009)): http://doc.ml.tu-berlin.37

de/toxbenchmark/Mutagenicity_N6512.csv38

• EFSA Dataset (695 compounds EFSA (2016)): https://data.europa.eu/euodp/39

data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls40

Mutagenicity classifications from Kazius and Hansen datasets were used without further41

processing. To achieve consistency with these datasets, EFSA compounds were classified42

as mutagenic, if at least one positive result was found for TA98 or T100 Salmonella43
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strains.44

Dataset merges were based on unique SMILES (Simplified Molecular Input Line Entry45

Specification) strings of the compound structures. Duplicated experimental data with46

the same outcome was merged into a single value, because it is likely that it originated47

from the same experiment. Contradictory results were kept as multiple measurements48

in the database. The combined training dataset contains 8309 unique structures.49

Source code for all data download, extraction and merge operations is pub-50

licly available from the git repository https://git.in-silico.ch/mutagenicity-paper51

under a GPL3 License. The new combined dataset can be found at https:52

//git.in-silico.ch/mutagenicity-paper/data/mutagenicity.csv.53

Pyrrolizidine alkaloid (PA) dataset54

The testing dataset consisted of 602 different PAs.55

The PA dataset was created from five independent, necine base substructure searches in56

PubChem (https://pubchem.ncbi.nlm.nih.gov/) and compared to the PAs listed in the57

EFSA publication EFSA (2011) and the book by Mattocks Mattocks (1986), to ensure,58

that all major PAs were included. PAs mentioned in these publications which were59

not found in the downloaded substances were searched individually in PubChem and,60

if available, downloaded separately. Non-PA substances, duplicates, and isomers were61

removed from the files, but artificial PAs, even if unlikely to occur in nature, were kept.62

The resulting PA dataset comprised a total of 602 different PAs.63

The PAs in the dataset were classified according to structural features. A total of 964

different structural features were assigned to the necine base, modifications of the necine65

base and to the necic acid:66

For the necine base, the following structural features were chosen:67
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• Retronecine-type (1,2-unstaturated necine base)68

• Otonecine-type (1,2-unstaturated necine base)69

• Platynecine-type (1,2-saturated necine base)70

For the modifications of the necine base, the following structural features were chosen:71

• N-oxide-type72

• Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type)73

• DHP-type (pyrrolic ester)74

For the necic acid, the following structural features were chosen:75

• Monoester-type76

• Open-ring diester-type77

• Macrocyclic diester-type78

The compilation of the PA dataset is described in detail in Schöning et al. (2017).79

Descriptors80

MolPrint2D (MP2D) fingerprints81

MolPrint2D fingerprints (O’Boyle et al. (2011)) use atom environments as molecular82

representation. They determine for each atom in a molecule, the atom types of its83

connected atoms to represent their chemical environment. This resembles basically the84

chemical concept of functional groups.85

In contrast to predefined lists of fragments (e.g. FP3, FP4 or MACCs fingerprints) or86

descriptors (e.g PaDEL) they are generated dynamically from chemical structures. This87

has the advantage that they can capture substructures of toxicological relevance that88

are not included in other descriptors.89

Chemical similarities (e.g. Tanimoto indices) can be calculated very efficiently with Mol-90
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Print2D fingerprints. Using them as descriptors for global models leads however to huge,91

sparsely populated matrices that cannot be handled with traditional machine learning92

algorithms. In our experiments none of the R and Tensorflow algorithms was capable to93

use them as descriptors.94

MolPrint2D fingerprints were calculated with the OpenBabel cheminformatics library95

(O’Boyle et al. (2011)).96

PaDEL descriptors97

Molecular 1D and 2D descriptors were calculated with the PaDEL-Descriptors program98

(http://www.yapcwsoft.com version 2.21, Yap (2011)).99

As the training dataset contained over 8309 instances, it was decided to delete instances100

with missing values during data pre-processing. Furthermore, substances with equivocal101

outcome were removed. The final training dataset contained 8080 instances with known102

mutagenic potential.103

During feature selection, descriptors with near zero variance were removed using ‘NearZe-104

roVar’-function (package ‘caret’). If the percentage of the most common value was more105

than 90% or when the frequency ratio of the most common value to the second most106

common value was greater than 95:5 (e.g. 95 instances of the most common value and107

only 5 or less instances of the second most common value), a descriptor was classified108

as having a near zero variance. After that, highly correlated descriptors were removed109

using the ‘findCorrelation’-function (package ‘caret’) with a cut-off of 0.9. This resulted110

in a training dataset with 516 descriptors. These descriptors were scaled to be in the111

range between 0 and 1 using the ‘preProcess’-function (package ‘caret’). The scaling112

routine was saved in order to apply the same scaling on the testing dataset. As these113

three steps did not consider the dependent variable (experimental mutagenicity), it was114

decided that they do not need to be included in the cross-validation of the model. To115
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further reduce the number of features, a LASSO (least absolute shrinkage and selection116

operator) regression was performed using the ‘glmnet’-function (package ‘glmnet’). The117

reduced dataset was used for the generation of the pre-trained models.118

PaDEL descriptors were used in global (RF, SVM, LR, NN) and local (lazar) models.119

Algorithms120

lazar121

lazar (lazy structure activity relationships) is a modular framework for read-across model122

development and validation. It follows the following basic workflow: For a given chemical123

structure lazar:124

• searches in a database for similar structures (neighbours) with experimental data,125

• builds a local QSAR model with these neighbours and126

• uses this model to predict the unknown activity of the query compound.127

This procedure resembles an automated version of read across predictions in toxicology,128

in machine learning terms it would be classified as a k-nearest-neighbour algorithm.129

Apart from this basic workflow, lazar is completely modular and allows the researcher to130

use arbitrary algorithms for similarity searches and local QSAR (Quantitative structure–131

activity relationship) modelling. Algorithms used within this study are described in the132

following sections.133

Neighbour identification134

Utilizing this modularity, similarity calculations were based both on MolPrint2D finger-135

prints and on PaDEL descriptors.136

For MolPrint2D fingerprints chemical similarity between two compounds a and b is137
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expressed as the proportion between atom environments common in both structures138

A ∩ B and the total number of atom environments A ∪ B (Jaccard/Tanimoto index).139

sim = |A ∩ B|
|A ∪ B|

For PaDEL descriptors chemical similarity between two compounds a and b is expressed140

as the cosine similarity between the descriptor vectors A for a and B for b.141

sim = A · B

|A||B|

Threshold selection is a trade-off between prediction accuracy (high threshold) and the142

number of predictable compounds (low threshold). As it is in many practical cases143

desirable to make predictions even in the absence of closely related neighbours, we follow144

a tiered approach:145

• First a similarity threshold of 0.5 is used to collect neighbours, to create a local146

QSAR model and to make a prediction for the query compound. This are predic-147

tions with high confidence.148

• If any of these steps fails, the procedure is repeated with a similarity threshold149

of 0.2 and the prediction is flagged with a warning that it might be out of the150

applicability domain of the training data (low confidence).151

• Similarity thresholds of 0.5 and 0.2 are the default values chosen by the software152

developers and remained unchanged during the course of these experiments.153

Compounds with the same structure as the query structure are automatically eliminated154

from neighbours to obtain unbiased predictions in the presence of duplicates.155

Local QSAR models and predictions156
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Only similar compounds (neighbours) above the threshold are used for local QSAR157

models. In this investigation, we are using a weighted majority vote from the neigh-158

bour’s experimental data for mutagenicity classifications. Probabilities for both classes159

(mutagenic/non-mutagenic) are calculated according to the following formula and the160

class with the higher probability is used as prediction outcome.161

pc =
∑ simn,c∑ simn

pc Probability of class c (e.g. mutagenic or non-mutagenic)162 ∑ simn,c Sum of similarities of neighbours with class c163 ∑ simn Sum of all neighbours164

Applicability domain165

The applicability domain (AD) of lazar models is determined by the structural diver-166

sity of the training data. If no similar compounds are found in the training data no167

predictions will be generated. Warnings are issued if the similarity threshold had to be168

lowered from 0.5 to 0.2 in order to enable predictions. Predictions without warnings169

can be considered as close to the applicability domain (high confidence) and predictions170

with warnings as more distant from the applicability domain (low confidence). Quantita-171

tive applicability domain information can be obtained from the similarities of individual172

neighbours.173

Availability174

• lazar experiments for this manuscript: https://git.in-silico.ch/mutagenicity-paper175

(source code, GPL3)176

• lazar framework: https://git.in-silico.ch/lazar (source code, GPL3)177
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• lazar GUI: https://git.in-silico.ch/lazar-gui (source code, GPL3)178

• Public web interface: https://lazar.in-silico.ch179

R Random Forest, Support Vector Machines, and Deep Learning180

The RF, SVM, and DL models were generated using the R software (R-project for181

Statistical Computing, https://www.r-project.org/; version 3.3.1), specific R packages182

used are identified for each step in the description below.183

Random Forest (RF)184

For the RF model, the ‘randomForest’-function (package ‘randomForest’) was used. A185

forest with 1000 trees with maximal terminal nodes of 200 was grown for the prediction.186

Support Vector Machines (SVM)187

The ‘svm’-function (package ‘e1071’) with a radial basis function kernel was used for the188

SVM model.189

TODO: Verena, Phillip Sollen wir die DL Modelle ebenso wie die Tensorflow als190

Neural Nets (NN) bezeichnen?191

Deep Learning192

The DL model was generated using the ‘h2o.deeplearning’-function (package ‘h2o’). The193

DL contained four hidden layer with 70, 50, 50, and 10 neurons, respectively. Other194

hyperparameter were set as follows: l1=1.0E-7, l2=1.0E-11, epsilon = 1.0E-10, rho =195

0.8, and quantile_alpha = 0.5. For all other hyperparameter, the default values were196

used. Weights and biases were in a first step determined with an unsupervised DL model.197

These values were then used for the actual, supervised DL model.198
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Figure 1: Flowchart of the generation and validation of the models generated in R-project

To validate these models, an internal cross-validation approach was chosen. The training199

dataset was randomly split in training data, which contained 95% of the data, and200

validation data, which contain 5% of the data. A feature selection with LASSO on the201

training data was performed, reducing the number of descriptors to approximately 100.202

This step was repeated five times. Based on each of the five different training data,203

the predictive models were trained and the performance tested with the validation data.204

This step was repeated 10 times.205

10



Applicability domain206

TODO: Verena: Mit welchen Deskriptoren hast Du den Jaccard index berechnet?207

Fuer den Jaccard index braucht man binaere Deskriptoren (zB MP2D), mit PaDEL208

Deskriptoren koennte man zB eine euklidische oder cosinus Distanz berechnen.209

The AD of the training dataset and the PA dataset was evaluated using the Jaccard210

distance. A Jaccard distance of ‘0’ indicates that the substances are similar, whereas a211

value of ‘1’ shows that the substances are different. The Jaccard distance was below 0.2212

for all PAs relative to the training dataset. Therefore, PA dataset is within the AD of213

the training dataset and the models can be used to predict the genotoxic potential of214

the PA dataset.215

Availability216

R scripts for these experiments can be found in https://git.in-silico.ch/mutagenicity-217

paper/scripts/R.218

Tensorflow models219

Data pre-processing was done by rank transformation using the ‘QuantileTransformer’220

procedure. A sequential model has been used. Four layers have been used: input layer,221

two hidden layers (with 12, 8 and 8 nodes, respectively) and one output layer. For the222

output layer, a sigmoidal activation function and for all other layers the ReLU (‘Rectified223

Linear Unit’) activation function was used. Additionally, a L2-penalty of 0.001 was used224

for the input layer. For training of the model, the ADAM algorithm was used to minimise225

the cross-entropy loss using the default parameters of Keras. Training was performed226

for 100 epochs with a batch size of 64. The model was implemented with Python 3.6227

and Keras.228
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TODO: Philipp Ich hab die alten Ergebnisse mit feature selection weggelassen, ist das229

ok? Dann muesste auch dieser Absatz gestrichen werden, oder?230

TODO: Philipp Kannst Du bitte die folgenden Absaetze ergaenzen231

Random forests (RF)232

Logistic regression (SGD) (LR-sgd)233

Logistic regression (scikit) (LR-scikit)234

TODO: Philipp, Verena DL oder NN?235

Neural Nets (NN)236

Alternatively, a DL model was established with Python-based Tensorflow program (https:237

//www.tensorflow.org/) using the high-level API Keras (https://www.tensorflow.org/238

guide/keras) to build the models.239

Tensorflow models used the same PaDEL descriptors as the R models.240

Validation241

10-fold cross-validation was used for all Tensorflow models.242

Availability243

Jupyter notebooks for these experiments can be found in https://git.in-silico.ch/mutagenicity-244

paper/scripts/tensorflow.245
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Results246

10-fold crossvalidations247

Crossvalidation results are summarized in the following tables: Table 1 shows lazar re-248

sults with MolPrint2D and PaDEL descriptors, Table 2 R results and Table 3 Tensorflow249

results.250

Table 1: Summary of lazar crossvalidation results (all/high confidence predictions)

MP2D PaDEL

Accuracy 0.82/0.84 0.58/0.58

True positive rate/Sensitivity 0.85/0.89 0.32/0.32

True negative rate/Specificity 0.78/0.79 0.79/0.79

Positive predictive value/Precision 0.8/0.83 0.56/0.56

Negative predictive value 0.84/0.85 0.59/0.59

Nr. predictions 7781/5890 4089/4081

Table 2: Summary of R crossvalidation results

RF SVM DL

Accuracy 0.64 0.61 0.56

True positive rate/Sensitivity 0.56 0.56 0.88

True negative rate/Specificity 0.71 0.67 0.24

Positive predictive value/Precision 0.66 0.62 0.53

Negative predictive value 0.62 0.61 0.67

Nr. predictions 8070 8070 8070
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Table 3: Summary of tensorflow crossvalidation results

RF LR-sgd LR-scikit NN

Accuracy 0.64 0.62 0.63 0.63

True positive rate/Sensitivity 0.59 0.6 0.62 0.61

True negative rate/Specificity 0.7 0.65 0.63 0.64

Positive predictive value/Precision 0.66 0.63 0.62 0.63

Negative predictive value 0.63 0.62 0.63 0.63

Nr. predictions 8080 8080 8080 8080

Figure 2 depicts the position of all crossvalidation results in receiver operating charac-251

teristic (ROC) space.252

Confusion matrices for all models are available from the git repository https://git.in-253

silico.ch/mutagenicity-paper/10-fold-crossvalidations/confusion-matrices/, individual254

predictions can be found in https://git.in-silico.ch/mutagenicity-paper/10-fold-255

crossvalidations/predictions/.256

The most accurate crossvalidation predictions have been obtained with standard lazar257

models using MolPrint2D descriptors (0.84 for predictions with high confidence, 0.82258

for all predictions). Models utilizing PaDEL descriptors have generally lower accuracies259

ranging from 0.56 (R deep learning) to 0.64 (R/Tensorflow random forests). Sensitiv-260

ity and specificity is generally well balanced with the exception of lazar-PaDEL (low261

sensitivity) and R deep learning (low specificity) models.262

Pyrrolizidine alkaloid mutagenicity predictions263

Mutagenicity predictions from all investigated models for 602 pyrrolizidine alkaloids264

(PAs) are shown in Table 4. A CSV table with all predictions can be downloaded from265
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Figure 2: ROC plot of crossvalidation results.
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https://git.in-silico.ch/mutagenicity-paper/tables/pa-table.csv266

TODO Verena und Philipp Koennt Ihr bitte stichprobenweise die Tabelle ueberprue-267

fen268

Table 4: Summary of pyrrolizidine alkaloid predictions: red: mutagen, green: non-
mutagen, grey: no prediction, dark red/green: low confidence
PubChem lazar R Tensorflow

CID Measured MP2D PaDEL DL RF SVM LR-sgd LR-scikit NN RF

9415

5281743

73614

119040

280564

5280906

5281733

5281734

5281744

5281756

5380876

21606566

613201

5281750

5355258

9341

10198

577603

99322

185716

442726

5281753

5281754

6269253

6440301

6440889

6441178

12308873

15120074

15736564

76957522

98222

197173

259727

268949

279070

323256

333106

333468

333469

340066
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341142

357033

357034

5281729

5458800

6438237

6440654

6604611

10569934

21771304

44284782

44284870

44374459

44374601

44559289

71449185

71449186

71458133

76313095

76315880

76330453

76334042

59827875

91554673

31745

33555

43040

72614

107939

119052

119390

148316

148317

148318

148326

153499

156006

156038

156169

156170

156778

157017

158192

162662

165417

165551

167211

169196

169779

179107

180203

180509
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181267

181871

181990

182761

186182

186973

186974

186977

186980

187805

188435

189677

190233

213104

427386

427628

427631

427636

428743

442740

442742

494923

522876

610955

636922

638871

638872

3033169

3038510

3080172

3085052

3086069

3360000

5036864

5134178

5255771

5281721

5318830

5319875

5319976

5320165

5321160

5368830

5379437

5566367

5969895

6104648

6254547

6351912

6429351

6429352

6429354

18



6429355

6429356

6431047

6431048

6433648

6433995

6437833

6437851

6440495

6440559

6440796

6440923

6441608

6442429

6442556

6442559

6442619

6443105

6556553

6708770

7082455

7224673

7457361

9548770

9975102

10023607

10095536

10251171

10253491

10412383

10548599

10569935

10572157

10577975

10597940

10639512

10696910

10710914

10719345

10759513

10838897

10938567

10939203

10991752

10992912

10996028

11008580

11011039

11014516

11058357

11068907

11241297
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11436705

11522514

11594349

11618501

11811349

11827237

11827238

12085704

12085705

12085706

12299896

12308839

13195112

13258912

14313395

14313398

14589301

14680172

14825842

14845641

14845643

15060933

15060936

15240755

15286355

15286357

15286358

15558714

15559784

15765644

15765645

15967910

16687858

20056157

20056173

20106090

20839516

21124823

21586628

21586631

21606568

21671366

21671448

21762186

21762187

21762188

21762361

21762363

23305243

23305253

23350898

23968120
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26879145

38364109

44374956

53462637

56776345

71358863

71440312

72701752

72702799

72702800

73759932

73893110

73893120

73893122

73893125

78358487

91735634

91746708

91746994

91746995

91746999

91747008

91747009

91747010

91747011

91747348

91747349

91747351

91747352

91747355

91747358

91747359

91747605

91747606

91747608

91747609

91747611

91748008

91748009

91748011

91748012

91749686

91749687

91749688

91749690

91749691

91749692

91751310

91751311

91751312

91751313

91751314
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91751316

91751437

91752775

91752874

91752876

91752877

91753270

91753274

91753673

92167309

92170778

92240481

92245581

92245583

92245889

92245890

92245891

92245892

92254804

92258314

92258315

92258316

92258317

92258329

94908779

100854393

100925967

100979629

100979630

100979631

101134822

101244775

101244776

101286187

101288094

101289784

101339003

101339004

101339005

101339006

101360987

101526911

101602684

101605596

101609673

101609674

101613210

101613211

101616166

101635998

101648301

101664189
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101674026

101674027

101696510

101705400

101705715

101779180

101915797

101915798

101915799

101949642

102004942

102064908

102090418

102092537

102115589

102115628

102122201

102144111

102207572

102228697

102228698

102228699

102445396

102478913

102588230

118701696

5380224

442706

32319

158633

190040

5352405

11723103

91747534

91747615

101044824

101044825

5281720

5459074

5281752

5284440

5281740

6441254

22310115

12041879

44559774

59827871

119243

526538

3713463

4095226

5281726
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5284370

6324941

6428023

6440206

6440207

6440919

6440920

6440921

6441405

6442432

10880125

11111309

12304138

14313730

21606532

21627985

89233061

91746989

91747000

91747001

91753267

91753269

91753273

91753275

100925969

101057317

101096098

101297578

101360988

101543954

102059844

102496937

102502161

104764

5281742

5281746

5281748

6440870

6441180

168571

355833

5799962

38350

148320

148321

148322

151347

151555

156034

162396

178760

188434
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194088

232738

382065

419279

442746

442749

496831

526539

4484072

4484073

5232043

5281722

5281745

5281749

5320938

5321137

5352420

5916866

6124067

6428018

6428020

6428026

6428030

6429060

6429061

6429062

6429063

6440039

6441496

6442293

6442685

6442687

6445133

6912281

10086314

10344513

10433214

10497165

10502318

10572291

10717096

10738499

10739462

10787656

11233017

11303112

11369281

14287858

14589311

14589313

14659818

16082455
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21144858

21581303

21626760

21670206

22524559

23305279

44148183

46861355

51413602

52340564

52340565

68380175

74934296

91746536

91746606

91747012

91747610

91747612

91747938

91747943

91749424

91749426

91749427

91749428

91749429

91749431

91749432

91749433

91749434

91749435

91749436

91749439

91749440

91749448

91749449

91749454

91749889

91749890

91753677

91991897

92019195

92233018

92246526

92263445

92263446

93504569

98567771

100916220

100976533

101297661

101324857

101360989
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101526912

101689715

101793685

101992452

102207684

102207687

102372765

102372767

102442056

102442057

102588231

102596225

102596226

6440436

656392

10806120

10523

26477

155104

155153

169554

4483893

5315247

10685701

13967757

46930232

51693704

67189194

91747354

91747604

91747607

91749893

91749894

91749895

91749896

91749897

91749898

91749899

101324794

101360427

118701599

Table 5 summarises the number of positive and negative mutagenicity predictions for all269

investigated models.270
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Table 5: Summary of pyrrolizidine alkaloid mutagenicity predictions

Model Nr.predictions mutagenic non-mutagenic

lazar-MP2D (all) 560 (93 %) 111 (20 %) 449 (80 %)

lazar-MP2D (high-confidence) 301 (50 %) 76 (25 %) 225 (75 %)

lazar-PaDEL (all) 600 (100 %) 83 (14 %) 517 (86 %)

lazar-PaDEL (high-confidence) 0 (0 %) 0 (0 %) 0 (0 %)

R-RF 602 (100 %) 18 (3 %) 584 (97 %)

R-SVM 602 (100 %) 11 (2 %) 591 (98 %)

R-DL 602 (100 %) 521 (87 %) 81 (13 %)

Tensorflow-RF 602 (100 %) 186 (31 %) 416 (69 %)

Tensorflow-LR-sgd 602 (100 %) 286 (48 %) 316 (52 %)

Tensorflow-LR-scikit 602 (100 %) 395 (66 %) 207 (34 %)

Tensorflow-NN 602 (100 %) 295 (49 %) 307 (51 %)

For the visualisation of the position of pyrrolizidine alkaloids in respect to the train-271

ing data set we have applied t-distributed stochastic neighbor embedding (t-SNE,272

Maaten and Hinton (2008)) for MolPrint2D and PaDEL descriptors. t-SNE maps273

each high-dimensional object (chemical) to a two-dimensional point, maintaining the274

high-dimensional distances of the objects. Similar objects are represented by nearby275

points and dissimilar objects are represented by distant points.276

Figure 3 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity training277

data in MP2D space (Tanimoto/Jaccard similarity).278

Figure 4 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity training279

data in PaDEL space (Euclidean similarity).280
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Figure 3: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA)
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Figure 4: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA)
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Discussion281

Data282

A new training dataset for Salmonella mutagenicity was created from three different283

sources (Kazius, McGuire, and Bursi (2005), Hansen et al. (2009), EFSA (2016)). It con-284

tains 8309 unique chemical structures, which is according to our knowledge the largest285

public mutagenicity dataset presently available. The new training data can be down-286

loaded from https://git.in-silico.ch/mutagenicity-paper/data/mutagenicity.csv.287

Model performance288

Table 1, Table 2, Table 3 and Figure 2 show that the standard lazar algorithm (with289

MP2D fingerprints) give the most accurate crossvalidation results. R Random Forests,290

Support Vector Machines and Tensorflow models have similar accuracies with balanced291

sensitivity (true position rate) and specificity (true negative rate). lazar models with292

PaDEL descriptors have low sensitivity and R Deep Learning models have low specificity.293

The accuracy of lazar in-silico predictions are comparable to the interlaboratory vari-294

ability of the Ames test (80-85% according to Benigni and Giuliani (1988)), especially for295

predictions with high confidence (84%). This is a clear indication that in-silico predic-296

tions can be as reliable as the bioassays, if the compounds are close to the applicability297

domain. This conclusion is also supported by our analysis of lazar lowest observed298

effect level predictions, which are also similar to the experimental variability (Helma et299

al. (2018)).300

The lowest number of predictions (4081) has been obtained from lazar-PaDEL high301

confidence predictions, the largest number of predictions comes from Tensorflow models302

(). Standard lazar give a slightly lower number of predictions (7781) than R and303

Tensorflow models. This is not necessarily a disadvantage, because lazar abstains from304
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predictions, if the query compound is very dissimilar from the compounds in the training305

set and thus avoids to make predictions for compounds out of the applicability domain.306

Descriptors307

This study uses two types of descriptors for the characterisation of chemical structures:308

MolPrint2D fingerprints (MP2D, Bender et al. (2004)) use atom environments (i.e.309

connected atom types for all atoms in a molecule) as molecular representation, which310

resembles basically the chemical concept of functional groups. MP2D descriptors are311

used to determine chemical similarities in the default lazar settings, and previous ex-312

periments have shown, that they give more accurate results than predefined fragments313

(e.g. MACCS, FP2-4).314

In order to investigate, if MP2D fingerprints are also suitable for global models we have315

tried to build R and Tensorflow models, both with and without unsupervised feature316

selection. Unfortunately none of the algorithms was capable to deal with the large and317

sparsely populated descriptor matrix. Based on this result we can conclude, that Mol-318

Print2D descriptors are at the moment unsuitable for standard global machine learning319

algorithms.320

lazar does not suffer from the size and sparseness problem, because (a) it utilizes inter-321

nally a much more efficient occurrence based representation and (b) it uses fingerprints322

only for similarity calculations and not as model parameters.323

PaDEL calculates topological and physical-chemical descriptors.324

TODO: Verena kannst Du bitte die Deskriptoren nochmals kurz beschreiben325

PaDEL descriptors were used for lazar, R and Tensorflow models. All models based on326

PaDEL descriptors had similar crossvalidation accuracies that were significantly lower327

than lazar MolPrint2D results. Direct comparisons are available only for the lazar328
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algorithm, and also in this case PaDEL accuracies were lower than MolPrint2D accura-329

cies.330

Based on lazar results we can conclude, that PaDEL descriptors are less suited for331

chemical similarity calculations than MP2D descriptors. It is also likely that PaDEL332

descriptors lead to less accurate predictions for global models, but we cannot draw any333

definitive conclusion in the absence of MP2D models.334

Algorithms335

lazar is formally a k-nearest-neighbor algorithm that searches for similar structures336

for a given compound and calculates the prediction based on the experimental data337

for these structures. The QSAR literature calls such models frequently local models,338

because models are generated specifically for each query compound. R and Tensorflow339

models are in contrast global models, i.e. a single model is used to make predictions340

for all compounds. It has been postulated in the past, that local models are more341

accurate, because they can account better for mechanisms, that affect only a subset of342

the training data. Our results seem to support this assumption, because standard lazar343

models with MolPrint2D descriptors perform better than global models. The accuracy344

of lazar models with PaDEL descriptors is however substantially lower and comparable345

to global models with the same descriptors.346

This observation may lead to the conclusion that the choice of suitable descriptors is more347

important for predictive accuracy than the modelling algorithm, but we were unable to348

obtain global MP2D models for direct comparisons. The selection of an appropriate349

modelling algorithm is still crucial, because it needs the capability to handle the descrip-350

tor space. Neighbour (and thus similarity) based algorithms like lazar have a clear351

advantage in this respect over global machine learning algorithms (e.g. RF, SVM, LR,352

NN), because Tanimoto/Jaccard similarities can be calculated efficiently with simple set353
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operations.354

Pyrrolizidine alkaloid mutagenicity predictions355

lazar models with MolPrint2D descriptors predicted 93% of the pyrrolizidine alkaloids356

(PAs) (50% with high confidence), the remaining compounds are not within its applica-357

bility domain. All other models predicted 100% of the 602 compounds, indicating that358

all compounds are within their applicability domain.359

Mutagenicity predictions from different models show little agreement in general (table360

4). 42 from 602 PAs have non-conflicting predictions (all of them non-mutagenic). Most361

models predict predominantly a non-mutagenic outcome for PAs, with exception of the362

R deep learning (DL) and the Tensorflow Scikit logistic regression models ( and 66%363

positive predictions).364

R RF and SVM models favor very strongly non-mutagenic predictions (only 3 and 2365

% mutagenic PAs), while Tensorflow models classify approximately half of the PAs as366

mutagenic (RF 31%, LR-sgd {:n=>602, :mut=>286, :non_mut=>316, :n_perc=>100,367

:mut_perc=>48, :non_mut_perc=>52}%, LR-scikit:66, LR-NN:49%). lazar models368

predict predominately non-mutagenicity, but to a lesser extend than R models (MP2D:20,369

PaDEL:14).370

It is interesting to note, that different implementations of the same algorithm show little371

accordance in their prediction (see e.g R-RF vs. Tensorflow-RF and LR-sgd vs. LR-scikit372

in Table 4 and Table 5).373

TODO Verena, Philipp habt ihr eine Erklaerung dafuer?374

Figure 3 and Figure 4 show the t-SNE of training data and pyrrolizidine alkaloids. In375

Figure 3 the PAs are located closely together at the outer border of the training set.376

In Figure 4 they are less clearly separated and spread over the space occupied by the377
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training examples.378

This is probably the reason why PaDEL models predicted all instances and the MP2D379

model only 560 PAs. Predicting a large number of instances is however not the ultimate380

goal, we need accurate predictions and an unambiguous estimation of the applicabil-381

ity domain. With PaDEL descriptors all PAs are within the applicability domain of382

the training data, which is unlikely despite the size of the training set. MolPrint2D383

descriptors provide a clearer separation, which is also reflected in a better separation384

between high and low confidence predictions in lazar MP2D predictions as compared to385

lazar PaDEL predictions. Crossvalidation results with substantially higher accuracies386

for MP2D models than for PaDEL models also support this argument.387

Differences between MP2D and PaDEL descriptors can be explained by their specific388

properties: PaDEL calculates a fixed set of descriptors for all structures, while Mol-389

Print2D descriptors resemble substructures that are present in a compound. For this390

reason there is no fixed number of MP2D descriptors, the descriptor space are all unique391

substructures of the training set. If a query compound contains new substructures,392

this is immediately reflected in a lower similarity to training compounds, which makes393

applicability domain estimations very straightforward. With PaDEL (or any other pre-394

defined descriptors), the same set of descriptors is calculated for every compound, even395

if a compound comes from an completely new chemical class.396

From a practical point we still have to face the question, how to choose model predictions,397

if no experimental data is available (we found two PAs in the training data, but this398

number is too low, to draw any general conclusions). Based on crossvalidation results399

and the arguments in favor of MolPrint2D descriptors we would put the highest trust400

in lazar MolPrint2D predictions, especially in high-confidence predictions. lazar pre-401

dictions have a accuracy comparable to experimental variability (Helma et al. (2018))402

for compounds within the applicability domain. But they should not be trusted blindly.403
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For practical purposes it is important to study the rationales (i.e. neighbors and their404

experimental activities) for each prediction of relevance. A freely accessible GUI for this405

purpose has been implemented at https://lazar.in-silico.ch.406

TODO: Verena Wenn Du lazar Ergebnisse konkret diskutieren willst, kann ich Dir aus-407

fuehrliche Vorhersagen (mit aehnlichen Verbindungen und deren Aktivitaet) fuer einzelne408

Beispiele zusammenstellen409

Conclusions410

A new public Salmonella mutagenicity training dataset with 8309 compounds was cre-411

ated and used it to train lazar, R and Tensorflow models with MolPrint2D and PaDEL412

descriptors. The best performance was obtained with lazar models using MolPrint2D413

descriptors, with prediction accuracies (84%) comparable to the interlaboratory variabil-414

ity of the Ames test (80-85%). Models based on PaDEL descriptors had lower accuracies415

than MolPrint2D models, but only the lazar algorithm could use MolPrint2D descrip-416

tors.417

TODO: PA Vorhersagen418
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