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Random forest, support vector machine, logistic regression, neural12

networks and k-nearest neighbor (lazar) algorithms, were applied to new13

Salmonella mutagenicity dataset with 8309 unique chemical structures. The14

best prediction accuracies in 10-fold-crossvalidation were obtained with15

lazar models and MolPrint2D descriptors, that gave accuracies (%) similar16

to the interlaboratory variability of the Ames test.17

TODO: PA results18

Introduction19

TODO: rationale for investigation20
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The main objectives of this study were21

• to generate a new mutagenicity training dataset, by combining the most compre-22

hensive public datasets23

• to compare the performance of MolPrint2D (MP2D) fingerprints with Chemistry24

Development Kit (CDK) descriptors25

• to compare the performance of global QSAR models (random forests (RF), support26

vector machines (SVM), logistic regression (LR), neural nets (NN)) with local27

models (lazar)28

• to apply these models for the prediction of pyrrolizidine alkaloid mutagenicity29

Materials and Methods30

Data31

Mutagenicity training data32

An identical training dataset was used for all models. The training dataset was compiled33

from the following sources:34

• Kazius/Bursi Dataset (4337 compounds, Kazius, McGuire, and Bursi (2005)):35

http://cheminformatics.org/datasets/bursi/cas_4337.zip36

• Hansen Dataset (6513 compounds, Hansen et al. (2009)): http://doc.ml.tu-berlin.37

de/toxbenchmark/Mutagenicity_N6512.csv38

• EFSA Dataset (695 compounds EFSA (2016)): https://data.europa.eu/euodp/39

data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls40

Mutagenicity classifications from Kazius and Hansen datasets were used without further41

processing. To achieve consistency with these datasets, EFSA compounds were classified42

as mutagenic, if at least one positive result was found for TA98 or T100 Salmonella43
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strains.44

Dataset merges were based on unique SMILES (Simplified Molecular Input Line Entry45

Specification) strings of the compound structures. Duplicated experimental data with46

the same outcome was merged into a single value, because it is likely that it originated47

from the same experiment. Contradictory results were kept as multiple measurements48

in the database. The combined training dataset contains 8309 unique structures.49

Source code for all data download, extraction and merge operations is pub-50

licly available from the git repository https://git.in-silico.ch/mutagenicity-paper51

under a GPL3 License. The new combined dataset can be found at https:52

//git.in-silico.ch/mutagenicity-paper/tree/data/mutagenicity.csv.53

Pyrrolizidine alkaloid (PA) dataset54

The testing dataset consisted of 602 different PAs.55

The PA dataset was created from five independent, necine base substructure searches in56

PubChem (https://pubchem.ncbi.nlm.nih.gov/) and compared to the PAs listed in the57

EFSA publication EFSA (2011) and the book by Mattocks Mattocks (1986), to ensure,58

that all major PAs were included. PAs mentioned in these publications which were59

not found in the downloaded substances were searched individually in PubChem and,60

if available, downloaded separately. Non-PA substances, duplicates, and isomers were61

removed from the files, but artificial PAs, even if unlikely to occur in nature, were kept.62

The resulting PA dataset comprised a total of 602 different PAs.63

The PAs in the dataset were classified according to structural features. A total of 964

different structural features were assigned to the necine base, modifications of the necine65

base and to the necic acid:66

For the necine base, the following structural features were chosen:67
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• Retronecine-type (1,2-unstaturated necine base)68

• Otonecine-type (1,2-unstaturated necine base)69

• Platynecine-type (1,2-saturated necine base)70

For the modifications of the necine base, the following structural features were chosen:71

• N-oxide-type72

• Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type)73

• DHP-type (pyrrolic ester)74

For the necic acid, the following structural features were chosen:75

• Monoester-type76

• Open-ring diester-type77

• Macrocyclic diester-type78

The compilation of the PA dataset is described in detail in Schöning et al. (2017).79

Descriptors80

MolPrint2D (MP2D) fingerprints81

MolPrint2D fingerprints (O’Boyle et al. (2011)) use atom environments as molecular82

representation. They determine for each atom in a molecule, the atom types of its83

connected atoms to represent their chemical environment. This resembles basically the84

chemical concept of functional groups.85

In contrast to predefined lists of fragments (e.g. FP3, FP4 or MACCs fingerprints) or86

descriptors (e.g CDK) they are generated dynamically from chemical structures. This87

has the advantage that they can capture substructures of toxicological relevance that88

are not included in other descriptors.89

Chemical similarities (e.g. Tanimoto indices) can be calculated very efficiently with Mol-90
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Print2D fingerprints. Using them as descriptors for global models leads however to huge,91

sparsely populated matrices that cannot be handled with traditional machine learning92

algorithms. In our experiments none of the R and Tensorflow algorithms was capable to93

use them as descriptors.94

MolPrint2D fingerprints were calculated with the OpenBabel cheminformatics library95

(O’Boyle et al. (2011)).96

Chemistry Development Kit (CDK) descriptors97

Molecular 1D and 2D descriptors were calculated with the PaDEL-Descriptors program98

(http://www.yapcwsoft.com version 2.21, Yap (2011)). PaDEL uses the Chemistry De-99

velopment Kit (CDK, https://cdk.github.io/index.html) library for descriptor calcula-100

tions.101

As the training dataset contained over 8309 instances, it was decided to delete instances102

with missing values during data pre-processing. Furthermore, substances with equivocal103

outcome were removed. The final training dataset contained 8080 instances with known104

mutagenic potential.105

During feature selection, descriptors with near zero variance were removed using ‘NearZe-106

roVar’-function (package ‘caret’). If the percentage of the most common value was more107

than 90% or when the frequency ratio of the most common value to the second most108

common value was greater than 95:5 (e.g. 95 instances of the most common value and109

only 5 or less instances of the second most common value), a descriptor was classified110

as having a near zero variance. After that, highly correlated descriptors were removed111

using the ‘findCorrelation’-function (package ‘caret’) with a cut-off of 0.9. This resulted112

in a training dataset with 516 descriptors. These descriptors were scaled to be in the113

range between 0 and 1 using the ‘preProcess’-function (package ‘caret’). The scaling114

routine was saved in order to apply the same scaling on the testing dataset. As these115
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three steps did not consider the dependent variable (experimental mutagenicity), it was116

decided that they do not need to be included in the cross-validation of the model. To117

further reduce the number of features, a LASSO (least absolute shrinkage and selection118

operator) regression was performed using the ‘glmnet’-function (package ‘glmnet’). The119

reduced dataset was used for the generation of the pre-trained models.120

CDK descriptors were used in global (RF, SVM, LR, NN) and local (lazar) models.121

Algorithms122

lazar123

lazar (lazy structure activity relationships) is a modular framework for read-across model124

development and validation. It follows the following basic workflow: For a given chemical125

structure lazar:126

• searches in a database for similar structures (neighbours) with experimental data,127

• builds a local QSAR model with these neighbours and128

• uses this model to predict the unknown activity of the query compound.129

This procedure resembles an automated version of read across predictions in toxicology,130

in machine learning terms it would be classified as a k-nearest-neighbour algorithm.131

Apart from this basic workflow, lazar is completely modular and allows the researcher to132

use arbitrary algorithms for similarity searches and local QSAR (Quantitative structure–133

activity relationship) modelling. Algorithms used within this study are described in the134

following sections.135

Neighbour identification136

Utilizing this modularity, similarity calculations were based both on MolPrint2D finger-137
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prints and on CDK descriptors.138

For MolPrint2D fingerprints chemical similarity between two compounds a and b is139

expressed as the proportion between atom environments common in both structures140

A ∩ B and the total number of atom environments A ∪ B (Jaccard/Tanimoto index).141

sim = |A ∩ B|
|A ∪ B|

For CDK descriptors chemical similarity between two compounds a and b is expressed142

as the cosine similarity between the descriptor vectors A for a and B for b.143

sim = A · B

|A||B|

Threshold selection is a trade-off between prediction accuracy (high threshold) and the144

number of predictable compounds (low threshold). As it is in many practical cases145

desirable to make predictions even in the absence of closely related neighbours, we follow146

a tiered approach:147

• First a similarity threshold of 0.5 is used to collect neighbours, to create a local148

QSAR model and to make a prediction for the query compound. This are predic-149

tions with high confidence.150

• If any of these steps fails, the procedure is repeated with a similarity threshold151

of 0.2 and the prediction is flagged with a warning that it might be out of the152

applicability domain of the training data (low confidence).153

• Similarity thresholds of 0.5 and 0.2 are the default values chosen by the software154

developers and remained unchanged during the course of these experiments.155

Compounds with the same structure as the query structure are automatically eliminated156
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from neighbours to obtain unbiased predictions in the presence of duplicates.157

Local QSAR models and predictions158

Only similar compounds (neighbours) above the threshold are used for local QSAR159

models. In this investigation, we are using a weighted majority vote from the neigh-160

bour’s experimental data for mutagenicity classifications. Probabilities for both classes161

(mutagenic/non-mutagenic) are calculated according to the following formula and the162

class with the higher probability is used as prediction outcome.163

pc =
∑ simn,c∑ simn

pc Probability of class c (e.g. mutagenic or non-mutagenic)164 ∑ simn,c Sum of similarities of neighbours with class c165 ∑ simn Sum of all neighbours166

Applicability domain167

The applicability domain (AD) of lazar models is determined by the structural diver-168

sity of the training data. If no similar compounds are found in the training data no169

predictions will be generated. Warnings are issued if the similarity threshold had to be170

lowered from 0.5 to 0.2 in order to enable predictions. Predictions without warnings171

can be considered as close to the applicability domain (high confidence) and predictions172

with warnings as more distant from the applicability domain (low confidence). Quantita-173

tive applicability domain information can be obtained from the similarities of individual174

neighbours.175

Availability176
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• lazar experiments for this manuscript: https://git.in-silico.ch/mutagenicity-paper177

(source code, GPL3)178

• lazar framework: https://git.in-silico.ch/lazar (source code, GPL3)179

• lazar GUI: https://git.in-silico.ch/lazar-gui (source code, GPL3)180

• Public web interface: https://lazar.in-silico.ch181

R Random Forest, Support Vector Machines, and Deep Learning182

The RF, SVM, and DL models were generated using the R software (R-project for183

Statistical Computing, https://www.r-project.org/; version 3.3.1), specific R packages184

used are identified for each step in the description below.185

Random Forest (RF)186

For the RF model, the ‘randomForest’-function (package ‘randomForest’) was used. A187

forest with 1000 trees with maximal terminal nodes of 200 was grown for the prediction.188

Support Vector Machines (SVM)189

The ‘svm’-function (package ‘e1071’) with a radial basis function kernel was used for the190

SVM model.191

TODO: Verena, Phillip Sollen wir die DL Modelle ebenso wie die Tensorflow als192

Neural Nets (NN) bezeichnen?193

Deep Learning194

The DL model was generated using the ‘h2o.deeplearning’-function (package ‘h2o’). The195

DL contained four hidden layer with 70, 50, 50, and 10 neurons, respectively. Other196

hyperparameter were set as follows: l1=1.0E-7, l2=1.0E-11, epsilon = 1.0E-10, rho =197
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0.8, and quantile_alpha = 0.5. For all other hyperparameter, the default values were198

used. Weights and biases were in a first step determined with an unsupervised DL model.199

These values were then used for the actual, supervised DL model.200

To validate these models, an internal cross-validation approach was chosen. The training201

dataset was randomly split in training data, which contained 95% of the data, and202

validation data, which contain 5% of the data. A feature selection with LASSO on the203

training data was performed, reducing the number of descriptors to approximately 100.204

This step was repeated five times. Based on each of the five different training data,205

the predictive models were trained and the performance tested with the validation data.206

This step was repeated 10 times.207

Flowchart of the generation and validation of the models generated in R-project208

Applicability domain209

TODO: Verena: Mit welchen Deskriptoren hast Du den Jaccard index berechnet?210

Fuer den Jaccard index braucht man binaere Deskriptoren (zB MP2D), mit PaDEL211

Deskriptoren koennte man zB eine euklidische oder cosinus Distanz berechnen.212

The AD of the training dataset and the PA dataset was evaluated using the Jaccard213

distance. A Jaccard distance of ‘0’ indicates that the substances are similar, whereas a214

value of ‘1’ shows that the substances are different. The Jaccard distance was below 0.2215

for all PAs relative to the training dataset. Therefore, PA dataset is within the AD of216

the training dataset and the models can be used to predict the genotoxic potential of217

the PA dataset.218

Availability219

R scripts for these experiments can be found in https://git.in-silico.ch/mutagenicity-220

paper/tree/scripts/R.221
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Tensorflow models222

Data pre-processing was done by rank transformation using the ‘QuantileTransformer’223

procedure. A sequential model has been used. Four layers have been used: input layer,224

two hidden layers (with 12, 8 and 8 nodes, respectively) and one output layer. For the225

output layer, a sigmoidal activation function and for all other layers the ReLU (‘Rectified226

Linear Unit’) activation function was used. Additionally, a L2-penalty of 0.001 was used227

for the input layer. For training of the model, the ADAM algorithm was used to minimise228

the cross-entropy loss using the default parameters of Keras. Training was performed229

for 100 epochs with a batch size of 64. The model was implemented with Python 3.6230

and Keras.231

TODO: Philipp Ich hab die alten Ergebnisse mit feature selection weggelassen, ist das232

ok? Dann muesste auch dieser Absatz gestrichen werden, oder?233

TODO: Philipp Kannst Du bitte die folgenden Absaetze ergaenzen234

Random forests (RF)235

Logistic regression (SGD) (LR-sgd)236

Logistic regression (scikit) (LR-scikit)237

TODO: Philipp, Verena DL oder NN?238

Neural Nets (NN)239

Alternatively, a DL model was established with Python-based Tensorflow program (https:240

//www.tensorflow.org/) using the high-level API Keras (https://www.tensorflow.org/241

guide/keras) to build the models.242
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Tensorflow models used the same CDK descriptors as the R models.243

Validation244

10-fold cross-validation was used for all Tensorflow models.245

Availability246

Jupyter notebooks for these experiments can be found in https://git.in-silico.ch/mutagenicity-247

paper/tree/scripts/tensorflow.248

Results249

10-fold crossvalidations250

Crossvalidation results are summarized in the following tables: Table ?? shows lazar re-251

sults with MolPrint2D and CDK descriptors, Table ?? R results and Table ?? Tensorflow252

results.253

Table 1: Summary of crossvalidation results with MolPrint2D descriptors

lazar (high confidence) lazar (all) RF LR-sgi LR-scikit NN SVM

Accuracy 84 82 80 84 84 84 84

True positive rate 89 85 81 84 84 85 85

True negative rate

Positive predictive value 83 80 78 83 83 83 83

Negative predictive value 85 84 82 84 85 85 86

Nr. predictions 5890 7781 8290 8290 8290 8290 8290
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Table 2: Summary of crossvalidation results with CDK descriptors

lazar (high confidence) lazar (all) RF LR-sgi LR-scikit NN SVM

Accuracy 58 58 83 76 78 80 78

True positive rate 32 32 85 77 78 80 79

True negative rate

Positive predictive value 56 56 81 75 79 81 76

Negative predictive value 59 59 85 78 78 79 80

Nr. predictions 4081 4089 8065 8065 8065 8065 8065

Figure 1 depicts the position of all crossvalidation results in receiver operating charac-254

teristic (ROC) space.255

Confusion matrices for all models are available from the git repository https://git.in-256

silico.ch/mutagenicity-paper/tree/10-fold-crossvalidations/confusion-matrices/, individ-257

ual predictions can be found in https://git.in-silico.ch/mutagenicity-paper/tree/10-fold-258

crossvalidations/predictions/.259

The most accurate crossvalidation predictions have been obtained with standard lazar260

models using MolPrint2D descriptors ( for predictions with high confidence, for all pre-261

dictions). Models utilizing CDK descriptors have generally lower accuracies ranging262

from (R deep learning) to (R/Tensorflow random forests). Sensitivity and specificity is263

generally well balanced with the exception of lazar-CDK (low sensitivity) and R deep264

learning (low specificity) models.265

Pyrrolizidine alkaloid mutagenicity predictions266

Mutagenicity predictions from all investigated models for 602 pyrrolizidine alkaloids267

(PAs) are shown in Table 4. A CSV table with all predictions can be downloaded from268
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Figure 1: ROC plot of crossvalidation results.
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https://git.in-silico.ch/mutagenicity-paper/tree/tables/pa-table.csv269

TODO Verena und Philipp Koennt Ihr bitte stichprobenweise die Tabelle ueberprue-270

fen271

Table 3: Summary of pyrrolizidine alkaloid predictions: red: mutagen, green: non-
mutagen, grey: no prediction, dark red/green: low confidence; 1: Retronecine,
2: Otonecine, 3: Platynecine, 4: N-oxide, 5: Dehydropyrrolizidine, 6:Tertiary
PA, 7: Macrocyclic-diester, 8: Monoester, 9: Diester

PA Group lazar MP2D CDK

1 2 3 4 5 6 7 8 9 Exp. MP2D CDK LR1 LR2 NN RF SVM LR1 LR2 NN RF SVM
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Table ?? summarises the number of positive and negative mutagenicity predictions for272

all investigated models.273

For the visualisation of the position of pyrrolizidine alkaloids in respect to the train-274

26



ing data set we have applied t-distributed stochastic neighbor embedding (t-SNE,275

Maaten and Hinton (2008)) for MolPrint2D and CDK descriptors. t-SNE maps276

each high-dimensional object (chemical) to a two-dimensional point, maintaining the277

high-dimensional distances of the objects. Similar objects are represented by nearby278

points and dissimilar objects are represented by distant points.279

Figure 11 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity training280

data in MP2D space (Tanimoto/Jaccard similarity).281

Figure 12 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity training282

data in CDK space (Euclidean similarity).283

Discussion284

Data285

A new training dataset for Salmonella mutagenicity was created from three different286

sources (Kazius, McGuire, and Bursi (2005), Hansen et al. (2009), EFSA (2016)). It con-287

tains 8309 unique chemical structures, which is according to our knowledge the largest288

public mutagenicity dataset presently available. The new training data can be down-289

loaded from https://git.in-silico.ch/mutagenicity-paper/tree/data/mutagenicity.csv.290

Model performance291

Table ??, Table ??, Table ?? and Figure 1 show that the standard lazar algorithm (with292

MP2D fingerprints) give the most accurate crossvalidation results. R Random Forests,293

Support Vector Machines and Tensorflow models have similar accuracies with balanced294

sensitivity (true position rate) and specificity (true negative rate). lazar models with295

CDK descriptors have low sensitivity and R Deep Learning models have low specificity.296

The accuracy of lazar in-silico predictions are comparable to the interlaboratory vari-297
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Figure 2: Summary of Dehydropyrrolizidine predictions
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Figure 3: Summary of Diester predictions
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Figure 4: Summary of Macrocyclic-diester predictions
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Figure 5: Summary of Monoester predictions

31



Figure 6: Summary of N-oxide predictions
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Figure 7: Summary of Otonecine predictions
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Figure 8: Summary of Platynecine predictions
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Figure 9: Summary of Retronecine predictions
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Figure 10: Summary of Tertiary PA predictions
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Figure 11: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA)
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Figure 12: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA)
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ability of the Ames test (80-85% according to Benigni and Giuliani (1988)), especially298

for predictions with high confidence (%). This is a clear indication that in-silico predic-299

tions can be as reliable as the bioassays, if the compounds are close to the applicability300

domain. This conclusion is also supported by our analysis of lazar lowest observed301

effect level predictions, which are also similar to the experimental variability (Helma et302

al. (2018)).303

The lowest number of predictions () has been obtained from lazar-CDK high confidence304

predictions, the largest number of predictions comes from Tensorflow models (). Stan-305

dard lazar give a slightly lower number of predictions () than R and Tensorflow models.306

This is not necessarily a disadvantage, because lazar abstains from predictions, if the307

query compound is very dissimilar from the compounds in the training set and thus308

avoids to make predictions for compounds out of the applicability domain.309

Descriptors310

This study uses two types of descriptors for the characterisation of chemical structures:311

MolPrint2D fingerprints (MP2D, Bender et al. (2004)) use atom environments (i.e.312

connected atom types for all atoms in a molecule) as molecular representation, which313

resembles basically the chemical concept of functional groups. MP2D descriptors are314

used to determine chemical similarities in the default lazar settings, and previous ex-315

periments have shown, that they give more accurate results than predefined fragments316

(e.g. MACCS, FP2-4).317

In order to investigate, if MP2D fingerprints are also suitable for global models we have318

tried to build R and Tensorflow models, both with and without unsupervised feature319

selection. Unfortunately none of the algorithms was capable to deal with the large and320

sparsely populated descriptor matrix. Based on this result we can conclude, that Mol-321

Print2D descriptors are at the moment unsuitable for standard global machine learning322
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algorithms.323

lazar does not suffer from the size and sparseness problem, because (a) it utilizes inter-324

nally a much more efficient occurrence based representation and (b) it uses fingerprints325

only for similarity calculations and not as model parameters.326

CDK calculates topological and physical-chemical descriptors.327

TODO: Verena kannst Du bitte die Deskriptoren nochmals kurz beschreiben328

CDK descriptors were used for lazar, R and Tensorflow models. All models based329

on CDK descriptors had similar crossvalidation accuracies that were significantly lower330

than lazar MolPrint2D results. Direct comparisons are available only for the lazar331

algorithm, and also in this case CDK accuracies were lower than MolPrint2D accuracies.332

Based on lazar results we can conclude, that CDK descriptors are less suited for chemi-333

cal similarity calculations than MP2D descriptors. It is also likely that CDK descriptors334

lead to less accurate predictions for global models, but we cannot draw any definitive335

conclusion in the absence of MP2D models.336

Algorithms337

lazar is formally a k-nearest-neighbor algorithm that searches for similar structures338

for a given compound and calculates the prediction based on the experimental data339

for these structures. The QSAR literature calls such models frequently local models,340

because models are generated specifically for each query compound. R and Tensorflow341

models are in contrast global models, i.e. a single model is used to make predictions342

for all compounds. It has been postulated in the past, that local models are more343

accurate, because they can account better for mechanisms, that affect only a subset of344

the training data. Our results seem to support this assumption, because standard lazar345

models with MolPrint2D descriptors perform better than global models. The accuracy346
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of lazar models with CDK descriptors is however substantially lower and comparable347

to global models with the same descriptors.348

This observation may lead to the conclusion that the choice of suitable descriptors is more349

important for predictive accuracy than the modelling algorithm, but we were unable to350

obtain global MP2D models for direct comparisons. The selection of an appropriate351

modelling algorithm is still crucial, because it needs the capability to handle the descrip-352

tor space. Neighbour (and thus similarity) based algorithms like lazar have a clear353

advantage in this respect over global machine learning algorithms (e.g. RF, SVM, LR,354

NN), because Tanimoto/Jaccard similarities can be calculated efficiently with simple set355

operations.356

Pyrrolizidine alkaloid mutagenicity predictions357

lazar models with MolPrint2D descriptors predicted 93% of the pyrrolizidine alkaloids358

(PAs) (50% with high confidence), the remaining compounds are not within its applica-359

bility domain. All other models predicted 100% of the 602 compounds, indicating that360

all compounds are within their applicability domain.361

Mutagenicity predictions from different models show little agreement in general (table362

4). 42 from 602 PAs have non-conflicting predictions (all of them non-mutagenic). Most363

models predict predominantly a non-mutagenic outcome for PAs, with exception of the364

R deep learning (DL) and the Tensorflow Scikit logistic regression models ( and 13%365

positive predictions).366

R RF and SVM models favor very strongly non-mutagenic predictions (only 20 and 21367

% mutagenic PAs), while Tensorflow models classify approximately half of the PAs as368

mutagenic (RF 15%, LR-sgd {:n=>602, :mut=>28, :non_mut=>574, :n_perc=>100,369

:mut_perc=>5, :non_mut_perc=>95}%, LR-scikit:13, LR-NN:16%). lazar models370

predict predominately non-mutagenicity, but to a lesser extend than R models (MP2D:20,371
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CDK:14).372

It is interesting to note, that different implementations of the same algorithm show little373

accordance in their prediction (see e.g R-RF vs. Tensorflow-RF and LR-sgd vs. LR-scikit374

in Table 4 and Table ??).375

TODO Verena, Philipp habt ihr eine Erklaerung dafuer?376

Figure 11 and Figure ?? show the t-SNE of training data and pyrrolizidine alkaloids. In377

Figure 11 the PAs are located closely together at the outer border of the training set.378

In Figure ?? they are less clearly separated and spread over the space occupied by the379

training examples.380

This is probably the reason why CDK models predicted all instances and the MP2D381

model only 560 PAs. Predicting a large number of instances is however not the ultimate382

goal, we need accurate predictions and an unambiguous estimation of the applicabil-383

ity domain. With CDK descriptors all PAs are within the applicability domain of the384

training data, which is unlikely despite the size of the training set. MolPrint2D descrip-385

tors provide a clearer separation, which is also reflected in a better separation between386

high and low confidence predictions in lazar MP2D predictions as compared to lazar387

CDK predictions. Crossvalidation results with substantially higher accuracies for MP2D388

models than for CDK models also support this argument.389

Differences between MP2D and CDK descriptors can be explained by their specific prop-390

erties: CDK calculates a fixed set of descriptors for all structures, while MolPrint2D391

descriptors resemble substructures that are present in a compound. For this reason392

there is no fixed number of MP2D descriptors, the descriptor space are all unique sub-393

structures of the training set. If a query compound contains new substructures, this is394

immediately reflected in a lower similarity to training compounds, which makes appli-395

cability domain estimations very straightforward. With CDK (or any other predefined396

descriptors), the same set of descriptors is calculated for every compound, even if a397
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compound comes from an completely new chemical class.398

From a practical point we still have to face the question, how to choose model predictions,399

if no experimental data is available (we found two PAs in the training data, but this400

number is too low, to draw any general conclusions). Based on crossvalidation results401

and the arguments in favor of MolPrint2D descriptors we would put the highest trust402

in lazar MolPrint2D predictions, especially in high-confidence predictions. lazar pre-403

dictions have a accuracy comparable to experimental variability (Helma et al. (2018))404

for compounds within the applicability domain. But they should not be trusted blindly.405

For practical purposes it is important to study the rationales (i.e. neighbors and their406

experimental activities) for each prediction of relevance. A freely accessible GUI for this407

purpose has been implemented at https://lazar.in-silico.ch.408

TODO: Verena Wenn Du lazar Ergebnisse konkret diskutieren willst, kann ich Dir aus-409

fuehrliche Vorhersagen (mit aehnlichen Verbindungen und deren Aktivitaet) fuer einzelne410

Beispiele zusammenstellen411

Conclusions412

A new public Salmonella mutagenicity training dataset with 8309 compounds was cre-413

ated and used it to train lazar, R and Tensorflow models with MolPrint2D and CDK414

descriptors. The best performance was obtained with lazar models using MolPrint2D415

descriptors, with prediction accuracies (%) comparable to the interlaboratory variability416

of the Ames test (80-85%). Models based on CDK descriptors had lower accuracies than417

MolPrint2D models, but only the lazar algorithm could use MolPrint2D descriptors.418

TODO: PA Vorhersagen419
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