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Random forest, support vector machine, logistic regression, neural13

networks and k-nearest neighbor (lazar) algorithms, were applied to new14

Salmonella mutagenicity dataset with 8290 unique chemical structures15

utilizing MolPrint2D and Chemistry Development Kit (CDK) descriptors.16

Crossvalidation accuracies of all investigated models ranged from 80-85%17

which is comparable with the interlaboratory variability of the Salmonella18

mutagenicity assay. Pyrrolizidine alkaloid predictions showed a clear19

distinction between chemical groups, where Otonecines had the highest20

proportion of positive mutagenicity predictions and Monoester the lowest.21
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Introduction22

TODO: rationale for investigation23

The main objectives of this study were24

• to generate a new mutagenicity training dataset, by combining the most compre-25

hensive public datasets26

• to compare the performance of MolPrint2D (MP2D) fingerprints with Chemistry27

Development Kit (CDK) descriptors28

• to compare the performance of global QSAR models (random forests (RF), support29

vector machines (SVM), logistic regression (LR), neural nets (NN)) with local30

models (lazar)31

• to apply these models for the prediction of pyrrolizidine alkaloid mutagenicity32

Materials and Methods33

Data34

Mutagenicity training data35

An identical training dataset was used for all models. The training dataset was compiled36

from the following sources:37

• Kazius/Bursi Dataset (4337 compounds, Kazius, McGuire, and Bursi (2005)):38

http://cheminformatics.org/datasets/bursi/cas_4337.zip39

• Hansen Dataset (6513 compounds, Hansen et al. (2009)): http://doc.ml.tu-berlin.40

de/toxbenchmark/Mutagenicity_N6512.csv41

• EFSA Dataset (695 compounds EFSA (2016)): https://data.europa.eu/euodp/42

data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls43
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Mutagenicity classifications from Kazius and Hansen datasets were used without further44

processing. To achieve consistency with these datasets, EFSA compounds were classified45

as mutagenic, if at least one positive result was found for TA98 or T100 Salmonella46

strains.47

Dataset merges were based on unique SMILES (Simplified Molecular Input Line En-48

try Specification, Weininger, Weininger, and Weininger (1989)) strings of the compound49

structures. Duplicated experimental data with the same outcome was merged into a50

single value, because it is likely that it originated from the same experiment. Contradic-51

tory results were kept as multiple measurements in the database. The combined training52

dataset contains 8290 unique structures and 8309 individual measurements.53

Source code for all data download, extraction and merge operations is pub-54

licly available from the git repository https://git.in-silico.ch/mutagenicity-paper55

under a GPL3 License. The new combined dataset can be found at https:56

//git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/mutagenicity.csv.57

Pyrrolizidine alkaloid (PA) dataset58

The pyrrolizidine alkaloid dataset was created from five independent, necine base sub-59

structure searches in PubChem (https://pubchem.ncbi.nlm.nih.gov/) and compared to60

the PAs listed in the EFSA publication EFSA (2011) and the book by Mattocks Mattocks61

(1986), to ensure, that all major PAs were included. PAs mentioned in these publica-62

tions which were not found in the downloaded substances were searched individually63

in PubChem and, if available, downloaded separately. Non-PA substances, duplicates,64

and isomers were removed from the files, but artificial PAs, even if unlikely to occur in65

nature, were kept. The resulting PA dataset comprised a total of 602 different PAs.66

The PAs in the dataset were classified according to structural features. A total of 967

different structural features were assigned to the necine base, modifications of the necine68
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base and to the necic acid:69

For the necine base, the following structural features were chosen:70

• Retronecine-type (1,2-unstaturated necine base, 392 compounds)71

• Otonecine-type (1,2-unstaturated necine base, 46 compounds)72

• Platynecine-type (1,2-saturated necine base, 140 compounds)73

For the modifications of the necine base, the following structural features were chosen:74

• N-oxide-type (84 compounds)75

• Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type, 495 com-76

pounds)77

• Dehydropyrrolizidine-type (pyrrolic ester, 23 compounds)78

For the necic acid, the following structural features were chosen:79

• Monoester-type (154 compounds)80

• Open-ring diester-type (163 compounds)81

• Macrocyclic diester-type (255 compounds)82

The compilation of the PA dataset is described in detail in Schöning et al. (2017).83

Descriptors84

MolPrint2D (MP2D) fingerprints85

MolPrint2D fingerprints (O’Boyle et al. (2011)) use atom environments as molecular86

representation. They determine for each atom in a molecule, the atom types of its87

connected atoms to represent their chemical environment. This resembles basically the88

chemical concept of functional groups.89

In contrast to predefined lists of fragments (e.g. FP3, FP4 or MACCs fingerprints) or90

descriptors (e.g CDK) they are generated dynamically from chemical structures. This91
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has the advantage that they can capture unknown substructures of toxicological relevance92

that are not included in other descriptors. In addition they allow the efficient calculation93

of chemical similarities (e.g. Tanimoto indices) with simple set operations.94

MolPrint2D fingerprints were calculated with the OpenBabel cheminformatics library95

(O’Boyle et al. (2011)). They can be obtained from the following locations:96

Training data:97

• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/98

mp2d/fingerprints.mp2d)99

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/100

mp2d/mutagenicity-fingerprints.csv.gz)101

Pyrrolizidine alkaloids:102

• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/103

mp2d/fingerprints.mp2d)104

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/105

mp2d/pa-fingerprints.csv.gz)106

Chemistry Development Kit (CDK) descriptors107

Molecular 1D and 2D descriptors were calculated with the PaDEL-Descriptors program108

(http://www.yapcwsoft.com version 2.21, Yap (2011)). PaDEL uses the Chemistry De-109

velopment Kit (CDK, https://cdk.github.io/index.html) library for descriptor calcula-110

tions.111

As the training dataset contained 8290 instances, it was decided to delete instances112

with missing values during data pre-processing. Furthermore, substances with equivocal113

outcome were removed. The final training dataset contained 1442 descriptors for 8083114

compounds.115
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CDK training data can be obtained from https://git.in-silico.ch/mutagenicity-paper/116

tree/mutagenicity/cdk/mutagenicity-mod-2.new.csv.117

The same procedure was applied for the pyrrolizidine dataset yielding descriptors for118

compounds. CDK features for pyrrolizidine alkaloids are available at https://git.in-silico.119

ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/cdk/PA-Padel-2D_m2.csv.120

Algorithms121

lazar122

lazar (lazy structure activity relationships) is a modular framework for read-across model123

development and validation. It follows the following basic workflow: For a given chemical124

structure lazar:125

• searches in a database for similar structures (neighbours) with experimental data,126

• builds a local QSAR model with these neighbours and127

• uses this model to predict the unknown activity of the query compound.128

This procedure resembles an automated version of read across predictions in toxicology,129

in machine learning terms it would be classified as a k-nearest-neighbour algorithm.130

Apart from this basic workflow, lazar is completely modular and allows the researcher to131

use arbitrary algorithms for similarity searches and local QSAR (Quantitative structure–132

activity relationship) modelling. Algorithms used within this study are described in the133

following sections.134

Feature preprocessing135

MolPrint2D features were used without preprocessing. Near zero variance and strongly136

correlated CDK descriptors were removed and the remaining descriptor values were137
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centered and scaled. Preprocessing was performed with the R caret preProcess function138

using the methods “nzv”,“corr”,“center” and “scale” with default settings.139

Neighbour identification140

Utilizing this modularity, similarity calculations were based both on MolPrint2D finger-141

prints and on CDK descriptors.142

For MolPrint2D fingerprints chemical similarity between two compounds a and b is143

expressed as the proportion between atom environments common in both structures144

A ∩ B and the total number of atom environments A ∪ B (Jaccard/Tanimoto index).145

sim = |A ∩ B|
|A ∪ B|

For CDK descriptors chemical similarity between two compounds a and b is expressed146

as the cosine similarity between the descriptor vectors A for a and B for b.147

sim = A · B

|A||B|

Threshold selection is a trade-off between prediction accuracy (high threshold) and the148

number of predictable compounds (low threshold). As it is in many practical cases149

desirable to make predictions even in the absence of closely related neighbours, we follow150

a tiered approach:151

• First a similarity threshold of 0.5 (MP2D/Tanimoto) or 0.9 (CDK/Cosine) is used152

to collect neighbours, to create a local QSAR model and to make a prediction for153

the query compound. This are predictions with high confidence.154

• If any of these steps fails, the procedure is repeated with a similarity threshold of155

0.2 (MP2D/Tanimoto) or 0.7 (CDK/Cosine) and the prediction is flagged with a156

7



warning that it might be out of the applicability domain of the training data (low157

confidence).158

• These Similarity thresholds are the default values chosen by software developers159

and remained unchanged during the course of these experiments.160

Compounds with the same structure as the query structure are automatically eliminated161

from neighbours to obtain unbiased predictions in the presence of duplicates.162

Local QSAR models and predictions163

Only similar compounds (neighbours) above the threshold are used for local QSAR164

models. In this investigation, we are using a weighted majority vote from the neigh-165

bour’s experimental data for mutagenicity classifications. Probabilities for both classes166

(mutagenic/non-mutagenic) are calculated according to the following formula and the167

class with the higher probability is used as prediction outcome.168

pc =
∑ simn,c∑ simn

pc Probability of class c (e.g. mutagenic or non-mutagenic)169 ∑ simn,c Sum of similarities of neighbours with class c170 ∑ simn Sum of all neighbours171

Applicability domain172

The applicability domain (AD) of lazar models is determined by the structural diver-173

sity of the training data. If no similar compounds are found in the training data no174

predictions will be generated. Warnings are issued if the similarity threshold had to be175

lowered from 0.5 to 0.2 in order to enable predictions. Predictions without warnings176

can be considered as close to the applicability domain (high confidence) and predictions177
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with warnings as more distant from the applicability domain (low confidence). Quantita-178

tive applicability domain information can be obtained from the similarities of individual179

neighbours.180

Validation181

10-fold cross validation was performed for model evaluation.182

Pyrrolizidine alkaloid predictions183

For the prediction of pyrrolizidine alkaloids models were generated with the MP2D and184

CDK training datasets. The complete feature set was used for MP2D predictions, for185

CDK predictions the intersection between training and pyrrolizidine alkaloid features186

was used.187

Availability188

• Source code for this manuscript (GPL3): https://git.in-silico.ch/lazar/tree/?h=189

mutagenicity-paper190

• Crossvalidation experiments (GPL3): https://git.in-silico.ch/lazar/tree/models/191

?h=mutagenicity-paper192

• Pyrrolizidine alkaloid predictions (GPL3): https://git.in-silico.ch/lazar/tree/193

predictions/?h=mutagenicity-paper194

• Public web interface: https://lazar.in-silico.ch195

Tensorflow models196

Feature Preprocessing197
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For preprocessing of the CDK features we used a quantile transformation to a uniform198

distribution. MP2D features were not preprocessed.199

Random forests (RF)200

For the random forest classifier we used the parameters n_estimators=1000and201

max_leaf_nodes=200. For the other parameters we used the scikit-learn default values.202

Logistic regression (SGD) (LR-sgd)203

For the logistic regression we used an ensemble of five trained models. For each model204

we used a batch size of 64 and trained for 50 epoch. As an optimizer ADAM was chosen.205

For the other parameters we used the tensorflow default values.206

Logistic regression (scikit) (LR-scikit)207

For the logistic regression we used as parameters the scikit-learn default values.208

Neural Nets (NN)209

For the neural network we used an ensemble of five trained models. For each model we210

used a batch size of 64 and trained for 50 epoch. As an optimizer ADAM was chosen.211

The neural network had 4 hidden layers with 64 nodes each and a ReLu activation212

function. For the other parameters we used the tensorflow default values.213

Support vector machines (SVM)214

We used the SVM implemented in scikit-learn. We used the parameters kernel=‘rbf’,215

gamma=‘scale’. For the other parameters we used the scikit-learn default values.216
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Validation217

10-fold cross-validation was used for all Tensorflow models.218

Pyrrolizidine alkaloid predictions219

For the prediction of pyrrolizidine alkaloids we trained the model described above on220

the training data. For training and prediction only the features were used that were in221

the intersection of features from the training data and the pyrrolizidine alkaloids.222

Availability223

Jupyter notebooks for these experiments can be found at the following locations224

Crossvalidation:225

• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/226

crossvalidations/mp2d/tensorflow227

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/228

cdk/tensorflow229

Pyrrolizidine alkaloids:230

• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/231

pyrrolizidine-alkaloids/mp2d/tensorflow232

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/233

cdk/tensorflow234

• CDK desc235
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Results236

10-fold crossvalidations237

Crossvalidation results are summarized in the following tables: Table 1 shows results238

with MolPrint2D descriptors and Table 2 with CDK descriptors.239

Table 1: Summary of crossvalidation results with MolPrint2D descriptors (lazar-HC:
lazar with high confidence, lazar-all: all lazar predictions, RF: random forests,
LR-sgd: logistic regression (stochastic gradient descent), LR-scikit: logistic re-
gression (scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 84 82 80 84 84 84 84

True positive rate 89 85 78 83 83 82 83

True negative rate 78 78 82 84 85 85 86

Positive predictive value 83 80 81 84 84 84 85

Negative predictive value 86 84 80 84 84 83 84

Nr. predictions 5864 7782 8303 8303 8303 8303 8303

Table 2: Summary of crossvalidation results with CDK descriptors (lazar-HC: lazar with
high confidence, lazar-all: all lazar predictions, RF: random forests, LR-sgd:
logistic regression (stochastic gradient descent), LR-scikit: logistic regression
(scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 85 82 84 79 80 85 82

True positive rate 87 84 81 81 80 85 82

True negative rate 82 80 86 78 80 85 82

Positive predictive value 85 81 85 79 80 85 82

Negative predictive value 85 82 82 80 80 85 82
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lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Nr. predictions 4872 7353 8077 8077 8077 8077 8077

Figure 1 depicts the position of all crossvalidation results in receiver operating charac-240

teristic (ROC) space.241

Confusion matrices for all models are available from the git repository https://git.in-242

silico.ch/mutagenicity-paper/tree/crossvalidations/confusion-matrices/, individual pre-243

dictions can be found in https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/predictions/.244

All investigated algorithm/descriptor combinations give accuracies between (80 and 85%)245

which is equivalent to the experimental variability of the Salmonella typhimurium mu-246

tagenicity bioassay (80-85%, Benigni and Giuliani (1988)). Sensitivities and specificities247

are balanced in all of these models.248

Pyrrolizidine alkaloid mutagenicity predictions249

Mutagenicity predictions of 602 pyrrolizidine alkaloids (PAs) from all investigated250

models can be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/251

pyrrolizidine-alkaloids/pa-predictions.csv. A visual representation of all PA predictions252

can be found at https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/253

pa-predictions.pdf.254

Figure 2 displays the proportion of positive mutagenicity predictions from all models255

for the different pyrrolizidine alkaloid groups. Tensorflow models predicted all 602256

pyrrolizidine alkaloids, lazar MP2D models predicted 560 compounds (301 with high257

confidence) and lazar CDK models 500 compounds (246 with high confidence).258

For the visualisation of the position of pyrrolizidine alkaloids in respect to the train-259

ing data set we have applied t-distributed stochastic neighbor embedding (t-SNE,260
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Figure 1: ROC plot of crossvalidation results (lazar-HC: lazar with high confidence,
lazar-all: all lazar predictions, RF: random forests, LR-sgd: logistic regres-
sion (stochastic gradient descent), LR-scikit: logistic regression (scikit), NN:
neural networks, SVM: support vector machines).
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Figure 2: Summary of pyrrolizidine alkaloid predictions
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Maaten and Hinton (2008)) for MolPrint2D and CDK descriptors. t-SNE maps261

each high-dimensional object (chemical) to a two-dimensional point, maintaining the262

high-dimensional distances of the objects. Similar objects are represented by nearby263

points and dissimilar objects are represented by distant points. t-SNE coordinates were264

calculated with the R Rtsne package using the default settings (perplexity = 30, theta265

= 0.5, max_iter = 1000).266

Figure 3 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity train-267

ing data in MP2D space (Tanimoto/Jaccard similarity), which resembles basically the268

structural diversity of the investigated compounds.269

Figure 4 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity train-270

ing data in CDK space (Euclidean similarity), which resembles basically the physical-271

chemical properties of the investigated compounds.272

Figure 5 and Figure 6 depict two example pyrrolizidine alkaloid mutagenicity predictions273

in the context of training data. t-SNE visualisations of all investigated models can be274

downloaded from https://git.in-silico.ch/mutagenicity-paper/figures.275

Discussion276

Data277

A new training dataset for Salmonella mutagenicity was created from three different278

sources (Kazius, McGuire, and Bursi (2005), Hansen et al. (2009), EFSA (2016)). It279

contains 8290 unique chemical structures, which is according to our knowledge the280

largest public mutagenicity dataset presently available. The new training data can281

be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/282

mutagenicity.csv.283
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Figure 3: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA) in MP2D space
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Figure 4: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA) in CDK space
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Figure 5: t-SNE visualisation of MP2D random forest predictions
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Figure 6: t-SNE visualisation of all CDK lazar predictions
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Algorithms284

lazar is formally a k-nearest-neighbor algorithm that searches for similar structures285

for a given compound and calculates the prediction based on the experimental data for286

these structures. The QSAR literature calls such models frequently local models, because287

models are generated specifically for each query compound. The investigated tensorflow288

models are in contrast global models, i.e. a single model is used to make predictions for289

all compounds. It has been postulated in the past, that local models are more accurate,290

because they can account better for mechanisms, that affect only a subset of the training291

data.292

Table 1, Table 2 and Figure 1 show that the crossvalidation accuracies of all models are293

comparable to the experimental variability of the Salmonella typhimurium mutagenicity294

bioassay (80-85% according to Benigni and Giuliani (1988)). All of these models have295

balanced sensitivity (true position rate) and specificity (true negative rate) and provide296

highly significant concordance with experimental data (as determined by McNemar’s297

Test). This is a clear indication that in-silico predictions can be as reliable as the298

bioassays. Given that the variability of experimental data is similar to model variability299

it is impossible to decide which model gives the most accurate predictions, as models300

with higher accuracies might just approximate experimental errors better than more301

robust models.302

Our results do not support the assumption that local models are superior to global303

models for classification purposes. For regression models (lowest observed effect level)304

we have found however that local models may outperform global models (Helma et al.305

(2018)) with accuracies similar to experimental variability.306

As all investigated algorithms give similar accuracies the selection will depend more on307

practical considerations than on intrinsic properties. Nearest neighbor algorithms like308

lazar have the practical advantage that the rationales for individual predictions can be309
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presented in a straightforward manner that is understandable without a background in310

statistics or machine learning (Figure 7). This allows a critical examination of individual311

predictions and prevents blind trust in models that are intransparent to users with a312

toxicological background.313

Descriptors314

This study uses two types of descriptors for the characterisation of chemical structures:315

MolPrint2D fingerprints (MP2D, Bender et al. (2004)) use atom environments (i.e.316

connected atom types for all atoms in a molecule) as molecular representation, which317

resembles basically the chemical concept of functional groups. MP2D descriptors are318

used to determine chemical similarities in the default lazar settings, and previous ex-319

periments have shown, that they give more accurate results than predefined fingerprints320

(e.g. MACCS, FP2-4).321

Chemistry Development Kit (CDK, Willighagen, Mayfield, and Alvarsson (2017)) descrip-322

tors were calculated with the PaDEL graphical interface (Yap (2011)). They include 1D323

and 2D topological descriptors as well as physical-chemical properties.324

All investigated algorithms obtained models within the experimental variability for both325

types of descriptors (Table 1, Table 2, Figure 1).326

Given that similar predictive accuracies are obtainable from both types of descriptors327

the choice depends once more on practical considerations:328

MolPrint2D fragments can be calculated very efficiently for every well defined chem-329

ical structure with OpenBabel (O’Boyle et al. (2011)). CDK descriptor calculations330

are in contrast much more resource intensive and may fail for a significant number of331

compounds ( from 8290).332

MolPrint2D fragments are generated dynamically from chemical structures and can be333
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Figure 7: Lazar screenshot of 12,21-Dihydroxy-4-methyl-4,8-secosenecinonan-8,11,16-
trione mutagenicity prediction
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used to determine if a compound contains structural features that are absent in training334

data. This feature can be used to determine applicability domains. CDK descriptors335

contain in contrast a predefined set of descriptors with unknown toxicological relevance.336

MolPrint2D fingerprints can be represented very efficiently as sets of features that are337

present in a given compound which makes similarity calculations very efficient. Due to338

the large number of substructures present in training compounds, they lead however to339

large and sparsely populated datasets, if they have to be expanded to a binary matrix340

(e.g. as input for tensorflow models). CDK descriptors contain in contrast in every case341

matrices with 1442 columns which can cause substantial computational overhead.342

Pyrrolizidine alkaloid mutagenicity predictions343

Figure 2 shows a clear differentiation between the different pyrrolizidine alkaloid groups.344

The largest proportion of mutagenic predictions was observed for Otonecines 65%345

(407/623), the lowest for Monoesters 2% (52/1889) and N-Oxides 5% (59/1052).346

Although most of the models show similar accuracies, sensitivities and specificities in347

crossvalidation experiments some of the models (MPD-RF, CDK-RF and CDK-SVM)348

predict a lower number of mutagens (2-5%) than the majority of the models (14-25%349

(Figure 2). lazar-CDK on the other hand predicts the largest number of mutagens for350

all groups with exception of Otonecines.351

These differences between predictions from different algorithms and descriptors were not352

expected based on crossvalidation results.353

In order to investigate, if any of the investigated models show systematic errors in the354

vicinity of pyrrolizidine-alkaloids we have performed a detailled t-SNE analysis of all355

models (see Figure 5 and Figure 6 for two examples, all visualisations can be found at356

https://git.in-silico.ch/mutagenicity-paper/figures.357
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Nevertheless none of the models showed obvious deviations from their expected be-358

haviour, so the reason for the disagreement between some of the models remains unclear359

at the moment. It is however perfectly possible that some systematic errors are covered360

up by converting high dimensional spaces to two coordinates and are thus invisible in361

t-SNE visualisations.362

Conclusions363

A new public Salmonella mutagenicity training dataset with 8309 compounds was cre-364

ated and used it to train lazar and Tensorflow models with MolPrint2D and CDK365

descriptors.366
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