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Random forest, support vector machine, logistic regression, neural13

networks and k-nearest neighbor (lazar) algorithms, were applied to new14

Salmonella mutagenicity dataset with 8290 unique chemical structures15

utilizing MolPrint2D and Chemistry Development Kit (CDK) descriptors.16

Crossvalidation accuracies of all investigated models ranged from 80-85%17

which is comparable with the interlaboratory variability of the Salmonella18

mutagenicity assay. Pyrrolizidine alkaloid predictions showed a clear19

distinction between chemical groups, where Otonecines had the highest20

proportion of positive mutagenicity predictions and Monoesters the lowest.21
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Introduction22

TODO: rationale for investigation23

As case study we decided to apply these mutagenicity models to Pyrrolizidines alkaloids24

(PAs) in order to highlight potentials and problems with the applicability of mutagenicity25

models for compounds with very limited experimental data.26

Pyrrolizidine alkaloids (PAs) are characteristic metabolites of some plant families,27

mainly: Asteraceae, Boraginaceae, Fabaceae and Orchidaceae (Hartmann and Witte28

(1995), Langel, Ober, and B. (2011)) and form a powerful defence mechanism against29

herbivores. PAs are heterocyclic ester alkaloids composed of a necine base (two fused30

five-membered rings joined by a single nitrogen atom) and a necic acid (one or two31

carboxylic ester arms), occurring principally in two forms, tertiary base PAs and PA32

N-oxides. Several in vitro studies have shown the mutagenic potential of PAs, which33

seems highly dependent on structure of necine base and necic acid (Hadi et al. (2021);34

Allemang et al. (2018), Louisse et al. (2019)). However, due to limited availability of35

pure substances, only a limited number of PAs have been investigated with regards to36

their structure-specific mutagenicity. To overcome this bottleneck, the prediction of37

structure-specific mutagenic potential of PAs with different machine learning models38

could provide further inside in the mechanisms.39

Summing up the main objectives of this study were40

• to generate a new mutagenicity training dataset, by combining the most compre-41

hensive public datasets42

• to compare the performance of MolPrint2D (MP2D) fingerprints with Chemistry43

Development Kit (CDK) descriptors44

• to compare the performance of global QSAR models (random forests (RF), support45

vector machines (SVM), logistic regression (LR), neural nets (NN)) with local46
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models (lazar)47

• to apply these models for the prediction of pyrrolizidine alkaloid mutagenicity48

Materials and Methods49

Data50

Mutagenicity training data51

An identical training dataset was used for all models. The training dataset was compiled52

from the following sources:53

• Kazius/Bursi Dataset (4337 compounds, Kazius, McGuire, and Bursi (2005)):54

http://cheminformatics.org/datasets/bursi/cas_4337.zip55

• Hansen Dataset (6513 compounds, Hansen et al. (2009)): http://doc.ml.tu-berlin.56

de/toxbenchmark/Mutagenicity_N6512.csv57

• EFSA Dataset (695 compounds EFSA (2016)): https://data.europa.eu/euodp/58

data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls59

Mutagenicity classifications from Kazius and Hansen datasets were used without further60

processing. To achieve consistency with these datasets, EFSA compounds were classified61

as mutagenic, if at least one positive result was found for TA98 or T100 Salmonella62

strains.63

Dataset merges were based on unique SMILES (Simplified Molecular Input Line En-64

try Specification, Weininger, Weininger, and Weininger (1989)) strings of the compound65

structures. Duplicated experimental data with the same outcome was merged into a66

single value, because it is likely that it originated from the same experiment. Contradic-67

tory results were kept as multiple measurements in the database. The combined training68

dataset contains 8290 unique structures and 8309 individual measurements.69
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Source code for all data download, extraction and merge operations is pub-70

licly available from the git repository https://git.in-silico.ch/mutagenicity-paper71

under a GPL3 License. The new combined dataset can be found at https:72

//git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/mutagenicity.csv.73

Pyrrolizidine alkaloid (PA) dataset74

The pyrrolizidine alkaloid dataset was created from five independent, necine base sub-75

structure searches in PubChem (https://pubchem.ncbi.nlm.nih.gov/) and compared to76

the PAs listed in the EFSA publication EFSA (2011) and the book by Mattocks Mattocks77

(1986), to ensure, that all major PAs were included. PAs mentioned in these publica-78

tions which were not found in the downloaded substances were searched individually79

in PubChem and, if available, downloaded separately. Non-PA substances, duplicates,80

and isomers were removed from the files, but artificial PAs, even if unlikely to occur in81

nature, were kept. The resulting PA dataset comprised a total of 602 different PAs.82

The PAs in the dataset were classified according to structural features. A total of 983

different structural features were assigned to the necine base, modifications of the necine84

base and to the necic acid:85

For the necine base, the following structural features were chosen:86

• Retronecine-type (1,2-unstaturated necine base, 392 compounds)87

• Otonecine-type (1,2-unstaturated necine base, 46 compounds)88

• Platynecine-type (1,2-saturated necine base, 140 compounds)89

For the modifications of the necine base, the following structural features were chosen:90

• N-oxide-type (84 compounds)91

• Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type, 495 com-92

pounds)93
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• Dehydropyrrolizidine-type (pyrrolic ester, 23 compounds)94

For the necic acid, the following structural features were chosen:95

• Monoester-type (154 compounds)96

• Open-ring diester-type (163 compounds)97

• Macrocyclic diester-type (255 compounds)98

The compilation of the PA dataset is described in detail in Schöning et al. (2017).99

Descriptors100

MolPrint2D (MP2D) fingerprints101

MolPrint2D fingerprints (O’Boyle et al. (2011)) use atom environments as molecular102

representation. They determine for each atom in a molecule, the atom types of its103

connected atoms to represent their chemical environment. This resembles basically the104

chemical concept of functional groups.105

In contrast to predefined lists of fragments (e.g. FP3, FP4 or MACCs fingerprints) or106

descriptors (e.g CDK) they are generated dynamically from chemical structures. This107

has the advantage that they can capture unknown substructures of toxicological relevance108

that are not included in other descriptors. In addition they allow the efficient calculation109

of chemical similarities (e.g. Tanimoto indices) with simple set operations.110

MolPrint2D fingerprints were calculated with the OpenBabel cheminformatics library111

(O’Boyle et al. (2011)). They can be obtained from the following locations:112

Training data:113

• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/114

mp2d/fingerprints.mp2d)115

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/116
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mp2d/mutagenicity-fingerprints.csv.gz)117

Pyrrolizidine alkaloids:118

• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/119

mp2d/fingerprints.mp2d)120

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/121

mp2d/pa-fingerprints.csv.gz)122

Chemistry Development Kit (CDK) descriptors123

Molecular 1D and 2D descriptors were calculated with the PaDEL-Descriptors program124

(http://www.yapcwsoft.com version 2.21, Yap (2011)). PaDEL uses the Chemistry De-125

velopment Kit (CDK, https://cdk.github.io/index.html) library for descriptor calcula-126

tions.127

As the training dataset contained 8290 instances, it was decided to delete instances128

with missing values during data pre-processing. Furthermore, substances with equivocal129

outcome were removed. The final training dataset contained 1442 descriptors for 8083130

compounds.131

CDK training data can be obtained from https://git.in-silico.ch/mutagenicity-paper/132

tree/mutagenicity/cdk/mutagenicity-mod-2.new.csv.133

The same procedure was applied for the pyrrolizidine dataset yielding descriptors for134

compounds. CDK features for pyrrolizidine alkaloids are available at https://git.in-silico.135

ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/cdk/PA-Padel-2D_m2.csv.136
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Algorithms137

lazar138

lazar (lazy structure activity relationships) is a modular framework for read-across model139

development and validation. It follows the following basic workflow: For a given chemical140

structure lazar:141

• searches in a database for similar structures (neighbours) with experimental data,142

• builds a local QSAR model with these neighbours and143

• uses this model to predict the unknown activity of the query compound.144

This procedure resembles an automated version of read across predictions in toxicology,145

in machine learning terms it would be classified as a k-nearest-neighbour algorithm.146

Apart from this basic workflow, lazar is completely modular and allows the researcher to147

use arbitrary algorithms for similarity searches and local QSAR (Quantitative structure–148

activity relationship) modelling. Algorithms used within this study are described in the149

following sections.150

Feature preprocessing151

MolPrint2D features were used without preprocessing. Near zero variance and strongly152

correlated CDK descriptors were removed and the remaining descriptor values were153

centered and scaled. Preprocessing was performed with the R caret preProcess function154

using the methods “nzv”,“corr”,“center” and “scale” with default settings.155

Neighbour identification156

Utilizing this modularity, similarity calculations were based both on MolPrint2D finger-157

prints and on CDK descriptors.158
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For MolPrint2D fingerprints chemical similarity between two compounds a and b is159

expressed as the proportion between atom environments common in both structures160

A ∩ B and the total number of atom environments A ∪ B (Jaccard/Tanimoto index).161

sim = |A ∩ B|
|A ∪ B|

For CDK descriptors chemical similarity between two compounds a and b is expressed162

as the cosine similarity between the descriptor vectors A for a and B for b.163

sim = A · B

|A||B|

Threshold selection is a trade-off between prediction accuracy (high threshold) and the164

number of predictable compounds (low threshold). As it is in many practical cases165

desirable to make predictions even in the absence of closely related neighbours, we follow166

a tiered approach:167

• First a similarity threshold of 0.5 (MP2D/Tanimoto) or 0.9 (CDK/Cosine) is used168

to collect neighbours, to create a local QSAR model and to make a prediction for169

the query compound. This are predictions with high confidence.170

• If any of these steps fails, the procedure is repeated with a similarity threshold of171

0.2 (MP2D/Tanimoto) or 0.7 (CDK/Cosine) and the prediction is flagged with a172

warning that it might be out of the applicability domain of the training data (low173

confidence).174

• These Similarity thresholds are the default values chosen by software developers175

and remained unchanged during the course of these experiments.176

Compounds with the same structure as the query structure are automatically eliminated177

from neighbours to obtain unbiased predictions in the presence of duplicates.178
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Local QSAR models and predictions179

Only similar compounds (neighbours) above the threshold are used for local QSAR180

models. In this investigation, we are using a weighted majority vote from the neigh-181

bour’s experimental data for mutagenicity classifications. Probabilities for both classes182

(mutagenic/non-mutagenic) are calculated according to the following formula and the183

class with the higher probability is used as prediction outcome.184

pc =
∑ simn,c∑ simn

pc Probability of class c (e.g. mutagenic or non-mutagenic)185 ∑ simn,c Sum of similarities of neighbours with class c186 ∑ simn Sum of all neighbours187

Applicability domain188

The applicability domain (AD) of lazar models is determined by the structural diver-189

sity of the training data. If no similar compounds are found in the training data no190

predictions will be generated. Warnings are issued if the similarity threshold had to be191

lowered from 0.5 to 0.2 in order to enable predictions. Predictions without warnings192

can be considered as close to the applicability domain (high confidence) and predictions193

with warnings as more distant from the applicability domain (low confidence). Quantita-194

tive applicability domain information can be obtained from the similarities of individual195

neighbours.196

Validation197

10-fold cross validation was performed for model evaluation.198
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Pyrrolizidine alkaloid predictions199

For the prediction of pyrrolizidine alkaloids models were generated with the MP2D and200

CDK training datasets. The complete feature set was used for MP2D predictions, for201

CDK predictions the intersection between training and pyrrolizidine alkaloid features202

was used.203

Availability204

• Source code for this manuscript (GPL3): https://git.in-silico.ch/lazar/tree/?h=205

mutagenicity-paper206

• Crossvalidation experiments (GPL3): https://git.in-silico.ch/lazar/tree/models/207

?h=mutagenicity-paper208

• Pyrrolizidine alkaloid predictions (GPL3): https://git.in-silico.ch/lazar/tree/209

predictions/?h=mutagenicity-paper210

• Public web interface: https://lazar.in-silico.ch211

Tensorflow models212

Feature Preprocessing213

For preprocessing of the CDK features we used a quantile transformation to a uniform214

distribution. MP2D features were not preprocessed.215

Random forests (RF)216

For the random forest classifier we used the parameters n_estimators=1000and217

max_leaf_nodes=200. For the other parameters we used the scikit-learn default values.218

10

https://git.in-silico.ch/lazar/tree/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/models/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/models/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/models/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/predictions/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/predictions/?h=mutagenicity-paper
https://git.in-silico.ch/lazar/tree/predictions/?h=mutagenicity-paper
https://lazar.in-silico.ch


Logistic regression (SGD) (LR-sgd)219

For the logistic regression we used an ensemble of five trained models. For each model220

we used a batch size of 64 and trained for 50 epoch. As an optimizer ADAM was chosen.221

For the other parameters we used the tensorflow default values.222

Logistic regression (scikit) (LR-scikit)223

For the logistic regression we used as parameters the scikit-learn default values.224

Neural Nets (NN)225

For the neural network we used an ensemble of five trained models. For each model we226

used a batch size of 64 and trained for 50 epoch. As an optimizer ADAM was chosen.227

The neural network had 4 hidden layers with 64 nodes each and a ReLu activation228

function. For the other parameters we used the tensorflow default values.229

Support vector machines (SVM)230

We used the SVM implemented in scikit-learn. We used the parameters kernel=‘rbf’,231

gamma=‘scale’. For the other parameters we used the scikit-learn default values.232

Validation233

10-fold cross-validation was used for all Tensorflow models.234

Pyrrolizidine alkaloid predictions235

For the prediction of pyrrolizidine alkaloids we trained the model described above on236

the training data. For training and prediction only the features were used that were in237

the intersection of features from the training data and the pyrrolizidine alkaloids.238
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Availability239

Jupyter notebooks for these experiments can be found at the following locations240

Crossvalidation:241

• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/242

crossvalidations/mp2d/tensorflow243

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/244

cdk/tensorflow245

Pyrrolizidine alkaloids:246

• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/247

pyrrolizidine-alkaloids/mp2d/tensorflow248

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/249

cdk/tensorflow250

• CDK desc251

Results252

10-fold crossvalidations253

Crossvalidation results are summarized in the following tables: Table 1 shows results254

with MolPrint2D descriptors and Table 2 with CDK descriptors.255

Table 1: Summary of crossvalidation results with MolPrint2D descriptors (lazar-HC:
lazar with high confidence, lazar-all: all lazar predictions, RF: random forests,
LR-sgd: logistic regression (stochastic gradient descent), LR-scikit: logistic re-
gression (scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 84 82 80 84 84 84 84
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lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

True positive rate 89 85 78 83 83 82 83

True negative rate 78 78 82 84 85 85 86

Positive predictive value 83 80 81 84 84 84 85

Negative predictive value 86 84 80 84 84 83 84

Nr. predictions 5864 7782 8303 8303 8303 8303 8303

Table 2: Summary of crossvalidation results with CDK descriptors (lazar-HC: lazar with
high confidence, lazar-all: all lazar predictions, RF: random forests, LR-sgd:
logistic regression (stochastic gradient descent), LR-scikit: logistic regression
(scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 85 82 84 79 80 85 82

True positive rate 87 84 81 81 80 85 82

True negative rate 82 80 86 78 80 85 82

Positive predictive value 85 81 85 79 80 85 82

Negative predictive value 85 82 82 80 80 85 82

Nr. predictions 4872 7353 8077 8077 8077 8077 8077

Figure 1 depicts the position of all crossvalidation results in receiver operating charac-256

teristic (ROC) space.257

Confusion matrices for all models are available from the git repository https://git.in-258

silico.ch/mutagenicity-paper/tree/crossvalidations/confusion-matrices/, individual pre-259

dictions can be found in https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/predictions/.260

All investigated algorithm/descriptor combinations give accuracies between (80 and 85%)261

which is equivalent to the experimental variability of the Salmonella typhimurium mu-262
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Figure 1: ROC plot of crossvalidation results (lazar-HC: lazar with high confidence,
lazar-all: all lazar predictions, RF: random forests, LR-sgd: logistic regres-
sion (stochastic gradient descent), LR-scikit: logistic regression (scikit), NN:
neural networks, SVM: support vector machines).
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tagenicity bioassay (80-85%, Benigni and Giuliani (1988)). Sensitivities and specificities263

are balanced in all of these models.264

Pyrrolizidine alkaloid mutagenicity predictions265

Mutagenicity predictions of 602 pyrrolizidine alkaloids (PAs) from all investigated266

models can be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/267

pyrrolizidine-alkaloids/pa-predictions.csv. A visual representation of all PA predictions268

can be found at https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/269

pa-predictions.pdf.270

For the visualisation of the position of pyrrolizidine alkaloids in respect to the train-271

ing data set we have applied t-distributed stochastic neighbor embedding (t-SNE,272

Maaten and Hinton (2008)) for MolPrint2D and CDK descriptors. t-SNE maps273

each high-dimensional object (chemical) to a two-dimensional point, maintaining the274

high-dimensional distances of the objects. Similar objects are represented by nearby275

points and dissimilar objects are represented by distant points. t-SNE coordinates were276

calculated with the R Rtsne package using the default settings (perplexity = 30, theta277

= 0.5, max_iter = 1000).278

Figure 2 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity train-279

ing data in MP2D space (Tanimoto/Jaccard similarity), which resembles basically the280

structural diversity of the investigated compounds.281

Figure 3 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity train-282

ing data in CDK space (Euclidean similarity), which resembles basically the physical-283

chemical properties of the investigated compounds.284

Figure 4 and Figure 5 depict two example pyrrolizidine alkaloid mutagenicity predictions285

in the context of training data. t-SNE visualisations of all investigated models can be286

downloaded from https://git.in-silico.ch/mutagenicity-paper/figures.287
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Figure 2: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA) in MP2D space
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Figure 3: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA) in CDK space
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Figure 4: t-SNE visualisation of MP2D random forest predictions
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Figure 5: t-SNE visualisation of all CDK lazar predictions
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Table 3 summarises the outcome of pyrrolizidine alkaloid predictions from all models288

with MolPrint2D and CDK descriptors.289

Table 3: Summary of pyrrolizidine alkaloid predictions

Model MP2D Mutagenic Nr. predictions CDK Mutagenic Nr. predictions

lazar-all 20% (111) 93% (560) 39% (193) 83% (500)

lazar-HC 25% (76) 50% (301) 45% (111) 41% (246)

RF 5% (28) 100% (602) 2% (10) 100% (602)

LR-sgd 21% (127) 100% (602) 16% (97) 100% (602)

LR-scikit 20% (118) 100% (602) 15% (88) 100% (602)

NN 21% (124) 100% (602) 25% (150) 100% (602)

SVM 14% (82) 100% (602) 3% (19) 100% (602)

Figure 6 displays the proportion of positive mutagenicity predictions from all models290

for the different pyrrolizidine alkaloid groups. Tensorflow models predicted all 602291

pyrrolizidine alkaloids, lazar MP2D models predicted 560 compounds (301 with high292

confidence) and lazar CDK models 500 compounds (246 with high confidence).293

For the lazar-HC model, only 50/41% of the PA dataset were within the stricter similarity294

thresholds of 0.5/0.9 (MP2D/CDK). Reduction of the similarity threshold to 0.2/0.5 in295

the lazar-all model increased the amount of predictable PAs to 93/83%. As the other296

ML models do not consider applicability domains, all PAs were predicted.297

Although most of the models show similar accuracies, sensitivities and specificities in298

crossvalidation experiments some of the models (MPD-RF, CDK-RF and CDK-SVM)299

predict a lower number of mutagens (2-5%) than the majority of the models (14-25%,300

Table 3, Figure 6).301

Over all models, the mean value of mutagenic predicted PAs was highest for Otonecines302
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Figure 6: Summary of pyrrolizidine alkaloid predictions
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(65%, 407/623), followed by Macrocyclic diesters (31%, 1042/3356), Dehydropy-303

rrolizidine (27%, 74/268), Tertiary PAs (19%, 1201/6307) and Retronecines (15%,304

762/5054).305

When excluding the aforementioned three deviating models, the rank order stays the306

same, but the percentage of mutagenic PAs is higher.307

The following rank order for mutagenic probability can be deduced from the results of308

all models taken together:309

Necine base: Platynecine < Retronecine « Otonecine310

Necic acid: Monoester < Diester « Macrocyclic diester311

Modification of necine base: N-oxide < Tertiary PA < Dehydropyrrolizidine312

Discussion313

Data314

A new training dataset for Salmonella mutagenicity was created from three different315

sources (Kazius, McGuire, and Bursi (2005), Hansen et al. (2009), EFSA (2016)). It316

contains 8290 unique chemical structures, which is according to our knowledge the317

largest public mutagenicity dataset presently available. The new training data can318

be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/319

mutagenicity.csv.320

Algorithms321

lazar is formally a k-nearest-neighbor algorithm that searches for similar structures322

for a given compound and calculates the prediction based on the experimental data for323

these structures. The QSAR literature calls such models frequently local models, because324
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models are generated specifically for each query compound. The investigated tensorflow325

models are in contrast global models, i.e. a single model is used to make predictions for326

all compounds. It has been postulated in the past, that local models are more accurate,327

because they can account better for mechanisms, that affect only a subset of the training328

data.329

Table 1, Table 2 and Figure 1 show that the crossvalidation accuracies of all models are330

comparable to the experimental variability of the Salmonella typhimurium mutagenicity331

bioassay (80-85% according to Benigni and Giuliani (1988)). All of these models have332

balanced sensitivity (true position rate) and specificity (true negative rate) and provide333

highly significant concordance with experimental data (as determined by McNemar’s334

Test). This is a clear indication that in-silico predictions can be as reliable as the335

bioassays. Given that the variability of experimental data is similar to model variability336

it is impossible to decide which model gives the most accurate predictions, as models337

with higher accuracies might just approximate experimental errors better than more338

robust models.339

Our results do not support the assumption that local models are superior to global340

models for classification purposes. For regression models (lowest observed effect level)341

we have found however that local models may outperform global models (Helma et al.342

(2018)) with accuracies similar to experimental variability.343

As all investigated algorithms give similar accuracies the selection will depend more on344

practical considerations than on intrinsic properties. Nearest neighbor algorithms like345

lazar have the practical advantage that the rationales for individual predictions can be346

presented in a straightforward manner that is understandable without a background in347

statistics or machine learning (Figure 7). This allows a critical examination of individual348

predictions and prevents blind trust in models that are intransparent to users with a349

toxicological background.350
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Figure 7: Lazar screenshot of 12,21-Dihydroxy-4-methyl-4,8-secosenecinonan-8,11,16-
trione mutagenicity prediction
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Descriptors351

This study uses two types of descriptors for the characterisation of chemical structures:352

MolPrint2D fingerprints (MP2D, Bender et al. (2004)) use atom environments (i.e.353

connected atom types for all atoms in a molecule) as molecular representation, which354

resembles basically the chemical concept of functional groups. MP2D descriptors are355

used to determine chemical similarities in the default lazar settings, and previous ex-356

periments have shown, that they give more accurate results than predefined fingerprints357

(e.g. MACCS, FP2-4).358

Chemistry Development Kit (CDK, Willighagen, Mayfield, and Alvarsson (2017)) descrip-359

tors were calculated with the PaDEL graphical interface (Yap (2011)). They include 1D360

and 2D topological descriptors as well as physical-chemical properties.361

All investigated algorithms obtained models within the experimental variability for both362

types of descriptors (Table 1, Table 2, Figure 1).363

Given that similar predictive accuracies are obtainable from both types of descriptors364

the choice depends once more on practical considerations:365

MolPrint2D fragments can be calculated very efficiently for every well defined chem-366

ical structure with OpenBabel (O’Boyle et al. (2011)). CDK descriptor calculations367

are in contrast much more resource intensive and may fail for a significant number of368

compounds ( from 8290).369

MolPrint2D fragments are generated dynamically from chemical structures and can be370

used to determine if a compound contains structural features that are absent in training371

data. This feature can be used to determine applicability domains. CDK descriptors372

contain in contrast a predefined set of descriptors with unknown toxicological relevance.373

MolPrint2D fingerprints can be represented very efficiently as sets of features that are374

present in a given compound which makes similarity calculations very efficient. Due to375
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the large number of substructures present in training compounds, they lead however to376

large and sparsely populated datasets, if they have to be expanded to a binary matrix377

(e.g. as input for tensorflow models). CDK descriptors contain in contrast in every case378

matrices with 1442 columns which can cause substantial computational overhead.379

Pyrrolizidine alkaloid mutagenicity predictions380

Algorithms and descriptors381

Figure 6 shows a clear differentiation between the different pyrrolizidine alkaloid groups.382

Nevertheless differences between predictions from different algorithms and descriptors383

(Table 3) were not expected based on crossvalidation results.384

In order to investigate, if any of the investigated models show systematic errors in the385

vicinity of pyrrolizidine-alkaloids we have performed a detailled t-SNE analysis of all386

models (see Figure 4 and Figure 5 for two examples, all visualisations can be found at387

https://git.in-silico.ch/mutagenicity-paper/figures.388

None of the models showed obvious deviations from their expected behaviour, so the389

reason for the disagreement between some of the models remains unclear at the moment.390

It is however possible that some systematic errors are covered up by converting high391

dimensional spaces to two coordinates and are thus invisible in t-SNE visualisations.392

Necic acid393

The rank order of the necic acid is comparable in all models. PAs from the monoester394

type had the lowest genotoxic potential, followed by PAs from the open-ring diester395

type. PAs with macrocyclic diesters had the highest genotoxic potential. The result fits396

well with current state of knowledge: in general, PAs, which have a macrocyclic diesters397

as necic acid, are considered to be more toxic than those with an open-ring diester or398

monoester (EFSA (2011), (“Pyrrolizidine Alkaloids–Genotoxicity, Metabolism Enzymes,399
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Metabolic Activation, and Mechanisms” 2004), Ruan2014b). This was also confirmed by400

more recent studies, confirming that macrocyclic- and open-diesters are more genotoxic401

in vitro than monoesters (Hadi et al. (2021); Allemang et al. (2018), Louisse et al.402

(2019)).403

Necine base404

In the rank order of necine base PAs, platynecine is the least mutagenic, followed by405

retronecine, and otonecine. Saturated PAs of the platynecine-type are generally ac-406

cepted to be less or non-toxic and have been shown in in vitro experiments to form407

no DNA-adducts ((“Pyrrolizidine Alkaloid-Derived Dna Adducts as a Common Biolog-408

ical Biomarker of Pyrrolizidine Alkaloid-Induced Tumorigenicity” 2013)). In literature,409

otonecine-type PAs were shown to be more toxic than those of the retronecine-type410

((“Assessment of Pyrrolizidine Alkaloid-Induced Toxicity in an in Vitro Screening Model”411

2013)).412

Modifications of necine base413

The group-specific results reflect the expected relationship between the groups: the low414

mutagenic potential of N-oxides and the high potential of Dehydropyrrolizidines (DHP)415

(Chen, Mei, and Fu (2010)).416

Dehydropyrrolizidines are regarded as the toxic principle in the metabolism of PAs, and417

known to produce protein- and DNA-adducts (Chen, Mei, and Fu (2010)). None of418

the models did not meet this expectation and predicted the majority of DHP as non-419

mutagenic. However, the following issues need to be considered. On the one hand, all420

DHP were outside of the stricter applicability domain of MP2D lazar. This indicates421

that they are structurally very different than the training data and might be out of the422

applicability domain of all models based on this training set. In addition, DHP has two423
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unsaturated double bounds in its necine base, making it highly reactive. DHP and other424

comparable molecules have a very short lifespan, and usually cannot be used in in vitro425

experiments.426

PA N-oxides are easily conjugated for extraction, they are generally considered as detox-427

ification products, which are in vivo quickly renally eliminated (Chen, Mei, and Fu428

(2010)).429

Overall the low number of positive mutagenicity predictions was unexpected. PAs are430

generally considered to be genotoxic, and the mode of action is also known. Therefore,431

the fact that some models predict the majority of PAs as not mutagenic seems contradic-432

tory. To understand this result, the experimental basis of the training dataset has to be433

considered. The training dataset is based on the Salmonella typhimurium mutagenicity434

bioassay (Ames test). There are some studies, which show mutagenicity of PAs in the435

Ames test (Chen, Mei, and Fu (2010)). Also, Rubiolo et al. (1992) examined several436

different PAs and several different extracts of PA-containing plants in the AMES test.437

They found that the Ames test was indeed able to detect mutagenicity of PAs, but in438

general, appeared to have a low sensitivity. The pre-incubation phase for metabolic439

activation of PAs by microsomal enzymes was the sensitivity-limiting step. This could440

very well mean that the low sensitivity of the Ames test for PAs is also reflected in the441

investigated models.442

Conclusions443

A new public Salmonella mutagenicity training dataset with 8309 experimental results444

was created and used to train lazar and Tensorflow models with MolPrint2D and CDK445

descriptors. All investigated algorithm and descriptor combinations showed accuracies446

comparable to the interlaboratory variability of the Ames test.447
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Pyrrolizidine alkaloid predictions showed a clear separation between different classes of448

PAs which were generally in accordance with the current toxicological knowledge about449

these compounds. Some of the models showed however a substantially lower number of450

mutagenicity predictions, despite similar crossvalidation results and we were unable to451

identify the reasons for this discrepancy within this investigation.452

Thus the practical question how to choose model predictions in the absence of experi-453

mental data remains open. Tensorflow predictions do not include applicability domain454

estimations and the rationales for predictions cannot be traced by toxicologists. Trans-455

parent models like lazar may have an advantage in this context, because they present456

rationales for predictions (similar compounds with experimental data) which can be457

accepted or rejected by toxicologists and provide validated applicability domain estima-458

tions.459
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