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Random forest, support vector machine, logistic regression, neural12

networks and k-nearest neighbor (lazar) algorithms, were applied to new13

Salmonella mutagenicity dataset with 8290 unique chemical structures.14

TODO: PA results15

Introduction16

TODO: rationale for investigation17

The main objectives of this study were18

• to generate a new mutagenicity training dataset, by combining the most compre-19

hensive public datasets20
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• to compare the performance of MolPrint2D (MP2D) fingerprints with Chemistry21

Development Kit (CDK) descriptors22

• to compare the performance of global QSAR models (random forests (RF), support23

vector machines (SVM), logistic regression (LR), neural nets (NN)) with local24

models (lazar)25

• to apply these models for the prediction of pyrrolizidine alkaloid mutagenicity26

Materials and Methods27

Data28

Mutagenicity training data29

An identical training dataset was used for all models. The training dataset was compiled30

from the following sources:31

• Kazius/Bursi Dataset (4337 compounds, Kazius, McGuire, and Bursi (2005)):32

http://cheminformatics.org/datasets/bursi/cas_4337.zip33

• Hansen Dataset (6513 compounds, Hansen et al. (2009)): http://doc.ml.tu-berlin.34

de/toxbenchmark/Mutagenicity_N6512.csv35

• EFSA Dataset (695 compounds EFSA (2016)): https://data.europa.eu/euodp/36

data/storage/f/2017-0719T142131/GENOTOX%20data%20and%20dictionary.xls37

Mutagenicity classifications from Kazius and Hansen datasets were used without further38

processing. To achieve consistency with these datasets, EFSA compounds were classified39

as mutagenic, if at least one positive result was found for TA98 or T100 Salmonella40

strains.41

Dataset merges were based on unique SMILES (Simplified Molecular Input Line Entry42

Specification) strings of the compound structures. Duplicated experimental data with43
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the same outcome was merged into a single value, because it is likely that it originated44

from the same experiment. Contradictory results were kept as multiple measurements in45

the database. The combined training dataset contains 8290 unique structures and 830946

individual measurements.47

Source code for all data download, extraction and merge operations is pub-48

licly available from the git repository https://git.in-silico.ch/mutagenicity-paper49

under a GPL3 License. The new combined dataset can be found at https:50

//git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/mutagenicity.csv.51

Pyrrolizidine alkaloid (PA) dataset52

The pyrrolizidine alkaloid dataset was created from five independent, necine base sub-53

structure searches in PubChem (https://pubchem.ncbi.nlm.nih.gov/) and compared to54

the PAs listed in the EFSA publication EFSA (2011) and the book by Mattocks Mattocks55

(1986), to ensure, that all major PAs were included. PAs mentioned in these publica-56

tions which were not found in the downloaded substances were searched individually57

in PubChem and, if available, downloaded separately. Non-PA substances, duplicates,58

and isomers were removed from the files, but artificial PAs, even if unlikely to occur in59

nature, were kept. The resulting PA dataset comprised a total of 602 different PAs.60

The PAs in the dataset were classified according to structural features. A total of 961

different structural features were assigned to the necine base, modifications of the necine62

base and to the necic acid:63

For the necine base, the following structural features were chosen:64

• Retronecine-type (1,2-unstaturated necine base, 392 compounds)65

• Otonecine-type (1,2-unstaturated necine base, 46 compounds)66

• Platynecine-type (1,2-saturated necine base, 140 compounds)67
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For the modifications of the necine base, the following structural features were chosen:68

• N-oxide-type (84 compounds)69

• Tertiary-type (PAs which were neither from the N-oxide- nor DHP-type, 495 com-70

pounds)71

• Dehydropyrrolizidine-type (pyrrolic ester, 23 compounds)72

For the necic acid, the following structural features were chosen:73

• Monoester-type (154 compounds)74

• Open-ring diester-type (163 compounds)75

• Macrocyclic diester-type (255 compounds)76

The compilation of the PA dataset is described in detail in Schöning et al. (2017).77

Descriptors78

MolPrint2D (MP2D) fingerprints79

MolPrint2D fingerprints (O’Boyle et al. (2011)) use atom environments as molecular80

representation. They determine for each atom in a molecule, the atom types of its81

connected atoms to represent their chemical environment. This resembles basically the82

chemical concept of functional groups.83

In contrast to predefined lists of fragments (e.g. FP3, FP4 or MACCs fingerprints) or84

descriptors (e.g CDK) they are generated dynamically from chemical structures. This85

has the advantage that they can capture unknown substructures of toxicological relevance86

that are not included in other descriptors. In addition they allow the efficient calculation87

of chemical similarities (e.g. Tanimoto indices) with simple set operations.88

MolPrint2D fingerprints were calculated with the OpenBabel cheminformatics library89

(O’Boyle et al. (2011)). They can be obtained from the following locations:90
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Training data:91

• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/92

mp2d/fingerprints.mp2d)93

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/94

mp2d/mutagenicity-fingerprints.csv.gz)95

Pyrrolizidine alkaloids:96

• sparse representation (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/97

mp2d/fingerprints.mp2d)98

• descriptor matrix (https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/99

mp2d/pa-fingerprints.csv.gz)100

Chemistry Development Kit (CDK) descriptors101

Molecular 1D and 2D descriptors were calculated with the PaDEL-Descriptors program102

(http://www.yapcwsoft.com version 2.21, Yap (2011)). PaDEL uses the Chemistry De-103

velopment Kit (CDK, https://cdk.github.io/index.html) library for descriptor calcula-104

tions.105

As the training dataset contained 8290 instances, it was decided to delete instances106

with missing values during data pre-processing. Furthermore, substances with equivocal107

outcome were removed. The final training dataset contained 1442 descriptors for 8083108

compounds.109

CDK training data can be obtained from https://git.in-silico.ch/mutagenicity-paper/110

tree/mutagenicity/cdk/mutagenicity-mod-2.new.csv.111

The same procedure was applied for the pyrrolizidine dataset yielding descriptors for112

compounds. CDK features for pyrrolizidine alkaloids are available at https://git.in-silico.113

ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/cdk/PA-Padel-2D_m2.csv.114
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Algorithms115

lazar116

lazar (lazy structure activity relationships) is a modular framework for read-across model117

development and validation. It follows the following basic workflow: For a given chemical118

structure lazar:119

• searches in a database for similar structures (neighbours) with experimental data,120

• builds a local QSAR model with these neighbours and121

• uses this model to predict the unknown activity of the query compound.122

This procedure resembles an automated version of read across predictions in toxicology,123

in machine learning terms it would be classified as a k-nearest-neighbour algorithm.124

Apart from this basic workflow, lazar is completely modular and allows the researcher to125

use arbitrary algorithms for similarity searches and local QSAR (Quantitative structure–126

activity relationship) modelling. Algorithms used within this study are described in the127

following sections.128

Neighbour identification129

Utilizing this modularity, similarity calculations were based both on MolPrint2D finger-130

prints and on CDK descriptors.131

For MolPrint2D fingerprints chemical similarity between two compounds a and b is132

expressed as the proportion between atom environments common in both structures133

A ∩ B and the total number of atom environments A ∪ B (Jaccard/Tanimoto index).134

sim = |A ∩ B|
|A ∪ B|

6



For CDK descriptors chemical similarity between two compounds a and b is expressed135

as the cosine similarity between the descriptor vectors A for a and B for b.136

sim = A · B

|A||B|

Threshold selection is a trade-off between prediction accuracy (high threshold) and the137

number of predictable compounds (low threshold). As it is in many practical cases138

desirable to make predictions even in the absence of closely related neighbours, we follow139

a tiered approach:140

• First a similarity threshold of 0.5 is used to collect neighbours, to create a local141

QSAR model and to make a prediction for the query compound. This are predic-142

tions with high confidence.143

• If any of these steps fails, the procedure is repeated with a similarity threshold144

of 0.2 and the prediction is flagged with a warning that it might be out of the145

applicability domain of the training data (low confidence).146

• Similarity thresholds of 0.5 and 0.2 are the default values chosen by the software147

developers and remained unchanged during the course of these experiments.148

Compounds with the same structure as the query structure are automatically eliminated149

from neighbours to obtain unbiased predictions in the presence of duplicates.150

Local QSAR models and predictions151

Only similar compounds (neighbours) above the threshold are used for local QSAR152

models. In this investigation, we are using a weighted majority vote from the neigh-153

bour’s experimental data for mutagenicity classifications. Probabilities for both classes154

(mutagenic/non-mutagenic) are calculated according to the following formula and the155
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class with the higher probability is used as prediction outcome.156

pc =
∑ simn,c∑ simn

pc Probability of class c (e.g. mutagenic or non-mutagenic)157 ∑ simn,c Sum of similarities of neighbours with class c158 ∑ simn Sum of all neighbours159

Applicability domain160

The applicability domain (AD) of lazar models is determined by the structural diver-161

sity of the training data. If no similar compounds are found in the training data no162

predictions will be generated. Warnings are issued if the similarity threshold had to be163

lowered from 0.5 to 0.2 in order to enable predictions. Predictions without warnings164

can be considered as close to the applicability domain (high confidence) and predictions165

with warnings as more distant from the applicability domain (low confidence). Quantita-166

tive applicability domain information can be obtained from the similarities of individual167

neighbours.168

Availability169

• Source code for this manuscript (GPL3): https://git.in-silico.ch/lazar/tree/?h=170

mutagenicity-paper171

• Crossvalidation experiments (GPL3): https://git.in-silico.ch/lazar/tree/models/172

?h=mutagenicity-paper173

• Pyrrolizidine alkaloid predictions (GPL3): https://git.in-silico.ch/lazar/tree/174

predictions/?h=mutagenicity-paper175

• Public web interface: https://lazar.in-silico.ch176
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Tensorflow models177

TODO: Philipp Kannst Du bitte die folgenden Absaetze ergaenzen und die Vor-178

gangsweise fuer MP2D/CDK bzw CV/PA Vorhersagen beschreiben.179

Random forests (RF)180

Logistic regression (SGD) (LR-sgd)181

Logistic regression (scikit) (LR-scikit)182

Neural Nets (NN)183

Support vector machines (SVM)184

Validation185

10-fold cross-validation was used for all Tensorflow models.186

Availability187

Jupyter notebooks for these experiments can be found at the following locations188

Crossvalidation:189

• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/190

crossvalidations/mp2d/tensorflow191

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/192

cdk/tensorflow193

Pyrrolizidine alkaloids:194
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• MolPrint2D fingerprints: https://git.in-silico.ch/mutagenicity-paper/tree/195

pyrrolizidine-alkaloids/mp2d/tensorflow196

• CDK descriptors: https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/197

cdk/tensorflow198

• CDK desc199

Results200

10-fold crossvalidations201

Crossvalidation results are summarized in the following tables: Table 1 shows results202

with MolPrint2D descriptors and Table 2 with CDK descriptors.203

Table 1: Summary of crossvalidation results with MolPrint2D descriptors (lazar-HC:
lazar with high confidence, lazar-all: all lazar predictions, RF: random forests,
LR-sgd: logistic regression (stochastic gradient descent), LR-scikit: logistic re-
gression (scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 84 82 80 84 84 84 84

True positive rate 88 85 78 83 83 82 83

True negative rate 78 79 82 84 85 85 86

Positive predictive value 82 80 81 84 84 84 85

Negative predictive value 85 84 80 84 84 83 84

Nr. predictions 6300 7777 8303 8303 8303 8303 8303
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Table 2: Summary of crossvalidation results with CDK descriptors (lazar-HC: lazar with
high confidence, lazar-all: all lazar predictions, RF: random forests, LR-sgd:
logistic regression (stochastic gradient descent), LR-scikit: logistic regression
(scikit), NN: neural networks, SVM: support vector machines)

lazar-HC lazar-all RF LR-sgd LR-scikit NN SVM

Accuracy 52 52 84 79 80 85 82

True positive rate 90 90 81 81 80 85 82

True negative rate 14 14 86 78 80 85 82

Positive predictive value 52 52 85 79 80 85 82

Negative predictive value 56 56 82 80 80 85 82

Nr. predictions 811 811 8077 8077 8077 8077 8077

Figure 1 depicts the position of all crossvalidation results in receiver operating charac-204

teristic (ROC) space.205

Confusion matrices for all models are available from the git repository https://git.in-206

silico.ch/mutagenicity-paper/tree/crossvalidations/confusion-matrices/, individual pre-207

dictions can be found in https://git.in-silico.ch/mutagenicity-paper/tree/crossvalidations/predictions/.208

With exception of lazar/CDK all investigated algorithm/descriptor combinations give209

accuracies between (80 and 85%) which is equivalent to the experimental variability210

of the Salmonella typhimurium mutagenicity bioassay (80-85%, Benigni and Giuliani211

(1988)). Sensitivities and specificities are balanced in all of these models.212

Pyrrolizidine alkaloid mutagenicity predictions213

Mutagenicity predictions from all investigated models for 602 pyrrolizidine alka-214

loids (PAs) can be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/215

pyrrolizidine-alkaloids/pa-predictions.csv. A visual representation of all PA predictions216
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Figure 1: ROC plot of crossvalidation results (lazar-HC: lazar with high confidence,
lazar-all: all lazar predictions, RF: random forests, LR-sgd: logistic regres-
sion (stochastic gradient descent), LR-scikit: logistic regression (scikit), NN:
neural networks, SVM: support vector machines).
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can be found at https://git.in-silico.ch/mutagenicity-paper/tree/pyrrolizidine-alkaloids/217

pa-predictions.pdf.218

Table 3 and Table 4 summarise the outcome of pyrrolizidine alkaloid predictions from219

all models with MolPrint2D and CDK descriptors.220

Table 3: Summary of MolPrint2D pyrrolizidine alkaloid predictions

Model mutagenic non-mutagenic Nr. predictions

lazar-all 20% (111) 80% (449) 93% (560)

lazar-HC 25% (76) 75% (225) 50% (301)

RF 5% (28) 95% (574) 100% (602)

LR-sgd 21% (127) 79% (475) 100% (602)

LR-scikit 20% (118) 80% (484) 100% (602)

NN 21% (124) 79% (478) 100% (602)

SVM 14% (82) 86% (520) 100% (602)

Table 4: Summary of CDK pyrrolizidine alkaloid predictions

Model mutagenic non-mutagenic Nr. predictions

lazar-all 20% (111) 80% (449) 93% (560)

lazar-HC 25% (76) 75% (225) 50% (301)

RF 2% (10) 98% (592) 100% (602)

LR-sgd 16% (97) 84% (505) 100% (602)

LR-scikit 15% (88) 85% (514) 100% (602)

NN 25% (150) 75% (452) 100% (602)

SVM 3% (19) 97% (583) 100% (602)

Figure 2 - Figure 10 display the proportion of positive mutagenicity predictions from all221
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models for the different pyrrolizidine alkaloid groups.222

For the visualisation of the position of pyrrolizidine alkaloids in respect to the train-223

ing data set we have applied t-distributed stochastic neighbor embedding (t-SNE,224

Maaten and Hinton (2008)) for MolPrint2D and CDK descriptors. t-SNE maps225

each high-dimensional object (chemical) to a two-dimensional point, maintaining the226

high-dimensional distances of the objects. Similar objects are represented by nearby227

points and dissimilar objects are represented by distant points.228

Figure 11 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity training229

data in MP2D space (Tanimoto/Jaccard similarity).230

Figure 12 shows the t-SNE of pyrrolizidine alkaloids (PA) and the mutagenicity training231

data in CDK space (Euclidean similarity).232

Discussion233

Data234

A new training dataset for Salmonella mutagenicity was created from three different235

sources (Kazius, McGuire, and Bursi (2005), Hansen et al. (2009), EFSA (2016)). It236

contains 8290 unique chemical structures, which is according to our knowledge the237

largest public mutagenicity dataset presently available. The new training data can238

be downloaded from https://git.in-silico.ch/mutagenicity-paper/tree/mutagenicity/239

mutagenicity.csv.240

Algorithms241

lazar is formally a k-nearest-neighbor algorithm that searches for similar structures242

for a given compound and calculates the prediction based on the experimental data for243

these structures. The QSAR literature calls such models frequently local models, because244
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Figure 2: Summary of Dehydropyrrolizidine predictions
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Figure 3: Summary of Diester predictions
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Figure 4: Summary of Macrocyclic-diester predictions
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Figure 5: Summary of Monoester predictions
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Figure 6: Summary of N-oxide predictions
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Figure 7: Summary of Otonecine predictions
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Figure 8: Summary of Platynecine predictions
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Figure 9: Summary of Retronecine predictions
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Figure 10: Summary of Tertiary PA predictions
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Figure 11: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA)
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Figure 12: t-SNE visualisation of mutagenicity training data and pyrrolizidine alkaloids
(PA)
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models are generated specifically for each query compound. The investigated tensorflow245

models are in contrast global models, i.e. a single model is used to make predictions for246

all compounds. It has been postulated in the past, that local models are more accurate,247

because they can account better for mechanisms, that affect only a subset of the training248

data.249

Table 1, Table 2 and Figure 1 show that all models with the exception of lazar-CDK have250

similar crossvalidation accuracies that are comparable to the experimental variability of251

the Salmonella typhimurium mutagenicity bioassay (80-85% according to Benigni and252

Giuliani (1988)). All of these models have balanced sensitivity (true position rate) and253

specificity (true negative rate) and provide highly significant concordance with experi-254

mental data (as determined by McNemar’s Test). This is a clear indication that in-silico255

predictions can be as reliable as the bioassays. Given that the variability of experimen-256

tal data is similar to model variability it is impossible to decide which model gives the257

most accurate predictions, as models with higher accuracies (e.g. NN-CDK) might just258

approximate experimental errors better than more robust models.259

lazar predictions with CDK descriptors are a notable exception, as it has a much lower260

overall accuracy () than all other models. lazar uses basically a k-nearest-neighbor261

(with variable k) and it seems that CDK descriptors are not very well suited for chemical262

similarity calculations. We have confirmed this independently by validating k-nn models263

from the R caret package, which give also sub-par accuracies (data not shown).264

Figure 12 is another indication that similarity calculations with CDK descriptors are265

not as useful as fingerprint based similarities, because it shows a less clearer separation266

between chemical classes and mutagens/non-mutagens than Figure 11. It seems that267

more complex models than simple k-nn are required to utilize CDK descriptors efficiently.268

Our results do not support the assumption that local models are superior to global269

models for classification purposes. For regression models (lowest observed effect level)270
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we have found however that local models may outperform global models (Helma et al.271

(2018)) with accuracies similar to experimental variability.272

Descriptors273

This study uses two types of descriptors for the characterisation of chemical structures:274

MolPrint2D fingerprints (MP2D, Bender et al. (2004)) use atom environments (i.e.275

connected atom types for all atoms in a molecule) as molecular representation, which276

resembles basically the chemical concept of functional groups. MP2D descriptors are277

used to determine chemical similarities in the default lazar settings, and previous ex-278

periments have shown, that they give more accurate results than predefined fingerprints279

(e.g. MACCS, FP2-4).280

Chemistry Development Kit (CDK, Willighagen E. L. (2017)) descriptors were calculated281

with the PaDEL graphical interface (Yap (2011)). They include 1D and 2D topological282

descriptors as well as physical-chemical properties.283

With exception of lazar all investigated algorithms obtained models within the exper-284

imental variability for both types of descriptors. As discussed before CDK descriptors285

seem to be less suitable for chemical similarity calculations than MolPrint2D descriptors.286

Given that similar predictive accuracies are obtainable from both types of descriptors287

the choice depends more on practical considerations:288

MolPrint2D fragments can be calculated very efficiently for every well defined chem-289

ical structure with OpenBabel (O’Boyle et al. (2011)). CDK descriptor calculations290

are in contrast much more resource intensive and may fail for a significant number of291

compounds ( from 8290).292

MolPrint2D fragments are generated dynamically from chemical structures and can be293

used to determine if a compound contains structural features that are absent in training294
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data. This feature can be used to determine applicability domains. CDK descriptors295

contain in contrast a predefined set of descriptors with unknown toxicological relevance.296

MolPrint2D fingerprints can be represented very efficiently as sets of features that are297

present in a given compound which makes similarity calculations very efficient. Due to298

the large number of substructures present in training compounds, they lead however to299

large and sparsely populated datasets, if they have to be expanded to a binary matrix300

(e.g. as input for tensorflow models). CDK descriptors contain in contrast in every case301

matrices with 1442 columns.302

Pyrrolizidine alkaloid mutagenicity predictions303

Figure 2 - Figure 10 show a clear differentiation between the different pyrrolizidine alka-304

loid groups. The largest proportion of mutagenic predictions was observed for Otonecines305

72% (458/634), the lowest for Monoesters 2% (45/1940) and N-Oxides 2% (27/1044).306

Although most of the models show similar accuracies, sensitivities and specificities in307

crossvalidation experiments some of the models (MPD-RF, CDK-RF and CDK-SVM)308

predict a lower number of mutagens (2-5%) than the majority of the models (14-25%309

Table 3, Table 4, Figure 2 - Figure 10).310

From a practical point we still have to face the question, how to choose model predictions,311

if no experimental data is available (we found two PAs in the training data, but this312

number is too low, to draw any general conclusions).313

TODO: Verena Hier ist ein alter Text von Dir zum Recylen:314

Necic acid315

The rank order of the necic acid is comparable in the four models considered (LAZAR,316

RF and DL (R-project and Tensorflow). PAs from the monoester type had the lowest317

genotoxic potential, followed by PAs from the open-ring diester type. PAs with macro-318
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cyclic diesters had the highest genotoxic potential. The result fit well with current state319

of knowledge: in general, PAs, which have a macrocyclic diesters as necic acid, are con-320

sidered more toxic than those with an open-ring diester or monoester EFSA 2011Fu et321

al. 2004Ruan et al. 2014b(; ; ).322

Necine base323

The rank order of necine base is comparable in LAZAR, RF, and DL (R-project) models:324

with platynecine being less or as genotoxic as retronecine, and otonecine being the most325

genotoxic. In the Tensorflow-generate DL model, platynecine also has the lowest geno-326

toxic probability, but are then followed by the otonecines and last by retronecine. These327

results partly correspond to earlier published studies. Saturated PAs of the platynecine-328

type are generally accepted to be less or non-toxic and have been shown in in vitro329

experiments to form no DNA-adducts Xia et al. 2013(). Therefore, it is striking, that330

1,2-unsaturated PAs of the retronecine-type should have an almost comparable genotoxic331

potential in the LAZAR and DL (R-project) model. In literature, otonecine-type PAs332

were shown to be more toxic than those of the retronecine-type Li et al. 2013().333

Modifications of necine base334

The group-specific results of the Tensorflow-generated DL model appear to reflect the335

expected relationship between the groups: the low genotoxic potential of N -oxides and336

the highest potential of dehydropyrrolizidines Chen et al. 2010().337

In the LAZAR model, the genotoxic potential of dehydropyrrolizidines (DHP) (using338

the extended AD) is comparable to that of tertiary PAs. Since, DHP is regarded as339

the toxic principle in the metabolism of PAs, and known to produce protein- and DNA-340

adducts Chen et al. 2010(), the LAZAR model did not meet this expectation it predicted341

the majority of DHP as being not genotoxic. However, the following issues need to be342

considered. On the one hand, all DHP were outside of the stricter AD of 0.5. This343

indicates that in general, there might be a problem with the AD. In addition, DHP has344
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two unsaturated double bounds in its necine base, making it highly reactive. DHP and345

other comparable molecules have a very short lifespan, and usually cannot be used in in346

vitro experiments. This might explain the absence of suitable neighbours in LAZAR.347

Furthermore, the probabilities for this substance groups needs to be considered, and348

not only the consolidated prediction. In the LAZAR model, all DHPs had probabilities349

for both outcomes (genotoxic and not genotoxic) mainly below 30%. Additionally, the350

probabilities for both outcomes were close together, often within 10% of each other. The351

fact that for both outcomes, the probabilities were low and close together, indicates a352

lower confidence in the prediction of the model for DHPs.353

In the DL (R-project) and RF model, N -oxides have a by far more genotoxic potential354

that tertiary PAs or dehydropyrrolizidines. As PA N -oxides are easily conjugated for355

extraction, they are generally considered as detoxification products, which are in vivo356

quickly renally eliminated Chen et al. 2010(). On the other hand, N -oxides can be also357

back-transformed to the corresponding tertiary PA Wang et al. 2005(). Therefore, it358

may be questioned, whether N -oxides themselves are generally less genotoxic than the359

corresponding tertiary PAs. However, in the groups of modification of the necine base,360

dehydropyrrolizidine, the toxic principle of PAs, should have had the highest genotoxic361

potential. Taken together, the predictions of the modifications of the necine base from362

the LAZAR, RF and R-generated DL model cannot - in contrast to the Tensorflow DL363

model - be considered as reliable.364

Overall, when comparing the prediction results of the PAs to current published knowl-365

edge, it can be concluded that the performance of most models was low to moderate.366

This might be contributed to the following issues:367

1. In the LAZAR model, only 26.6% PAs were within the stricter AD. With the368

extended AD, 92.3% of the PAs could be included in the prediction. Even though369

the Jaccard distance between the training dataset and the PA dataset for the RF,370
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SVM, and DL (R-project and Tensorflow) models was small, suggesting a high371

similarity, the LAZAR indicated that PAs have only few local neighbours, which372

might adversely affect the prediction of the mutagenic potential of PAs.373

2. All above-mentioned models were used to predict the mutagenicity of PAs. PAs374

are generally considered to be genotoxic, and the mode of action is also known.375

Therefore, the fact that some models predict the majority of PAs as not genotoxic376

seems contradictory. To understand this result, the basis, the training dataset, has377

to be considered. The mutagenicity of in the training dataset are based on data of378

mutagenicity in bacteria. There are some studies, which show mutagenicity of PAs379

in the AMES test Chen et al. 2010(). Also, Rubiolo et al. (1992) examined several380

different PAs and several different extracts of PA-containing plants in the AMES381

test. They found that the AMES test was indeed able to detect mutagenicity of382

PAs, but in general, appeared to have a low sensitivity. The pre-incubation phase383

for metabolic activation of PAs by microsomal enzymes was the sensitivity-limiting384

step. This could very well mean that this is also reflected in the QSAR models.385

Conclusions386

A new public Salmonella mutagenicity training dataset with 8309 compounds was cre-387

ated and used it to train lazar and Tensorflow models with MolPrint2D and CDK388

descriptors.389
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